Update app.py
Browse files
app.py
CHANGED
@@ -6,47 +6,51 @@ import plotly.express as px
|
|
6 |
import scipy.optimize as sco
|
7 |
from datetime import datetime, timedelta
|
8 |
import random
|
9 |
-
import
|
10 |
import time
|
11 |
|
12 |
def fetch_stock_data(tickers):
|
13 |
-
"""Fetch real stock data using
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
|
18 |
-
for
|
19 |
try:
|
20 |
-
#
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
except Exception as e:
|
30 |
-
print(f"Error fetching {ticker}: {str(e)}")
|
31 |
-
continue
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
combined_data = pd.concat(data_frames, axis=1)
|
36 |
-
combined_data.columns = [col.replace("_Close", "") for col in combined_data.columns]
|
37 |
-
if not combined_data.empty:
|
38 |
-
return combined_data
|
39 |
-
|
40 |
-
print(f"Retry {retry + 1}/{max_retries} - No data received")
|
41 |
-
time.sleep(retry_delay)
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
except Exception as e:
|
44 |
-
print(f"Error
|
45 |
-
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
def generate_sample_data(tickers):
|
52 |
"""Generate sample data as backup"""
|
@@ -62,8 +66,14 @@ def generate_sample_data(tickers):
|
|
62 |
|
63 |
return pd.DataFrame(data, index=dates)
|
64 |
|
65 |
-
#
|
66 |
-
SP500_TICKERS = [
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
def calculate_portfolio_metrics(weights, returns):
|
69 |
portfolio_return = np.sum(returns.mean() * weights) * 252
|
@@ -96,8 +106,8 @@ def simulate_investment(weights, mu, years, initial_investment=10000):
|
|
96 |
|
97 |
def output_results(risk_level):
|
98 |
try:
|
99 |
-
# Select random tickers
|
100 |
-
selected_tickers = random.sample(SP500_TICKERS, min(len(SP500_TICKERS),
|
101 |
|
102 |
# Fetch real stock data
|
103 |
stocks_df = fetch_stock_data(selected_tickers)
|
|
|
6 |
import scipy.optimize as sco
|
7 |
from datetime import datetime, timedelta
|
8 |
import random
|
9 |
+
import requests
|
10 |
import time
|
11 |
|
12 |
def fetch_stock_data(tickers):
|
13 |
+
"""Fetch real stock data using Alpha Vantage API"""
|
14 |
+
API_KEY = "Y86RZ52NQ8YVX7F6" # Should be in environment variable in production
|
15 |
+
BASE_URL = "https://www.alphavantage.co/query"
|
16 |
+
all_data = {}
|
17 |
|
18 |
+
for ticker in tickers:
|
19 |
try:
|
20 |
+
# Add delay to respect rate limits (5 API calls per minute for free tier)
|
21 |
+
time.sleep(12) # 12 second delay between calls
|
22 |
+
|
23 |
+
params = {
|
24 |
+
"function": "TIME_SERIES_DAILY_ADJUSTED",
|
25 |
+
"symbol": ticker,
|
26 |
+
"outputsize": "full",
|
27 |
+
"apikey": API_KEY
|
28 |
+
}
|
|
|
|
|
|
|
29 |
|
30 |
+
response = requests.get(BASE_URL, params=params)
|
31 |
+
data = response.json()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
if "Time Series (Daily)" in data:
|
34 |
+
# Convert the time series data to DataFrame
|
35 |
+
df = pd.DataFrame.from_dict(data["Time Series (Daily)"], orient="index")
|
36 |
+
df = df.astype(float)
|
37 |
+
all_data[ticker] = df["4. close"].iloc[:252] # Get last year of data
|
38 |
+
print(f"Successfully fetched data for {ticker}")
|
39 |
+
else:
|
40 |
+
print(f"No data found for {ticker}")
|
41 |
+
|
42 |
except Exception as e:
|
43 |
+
print(f"Error fetching {ticker}: {str(e)}")
|
44 |
+
continue
|
45 |
|
46 |
+
if not all_data:
|
47 |
+
print("No data received, using backup data")
|
48 |
+
return generate_sample_data(tickers)
|
49 |
+
|
50 |
+
# Combine all data and align dates
|
51 |
+
df = pd.DataFrame(all_data)
|
52 |
+
df = df.sort_index(ascending=True)
|
53 |
+
return df
|
54 |
|
55 |
def generate_sample_data(tickers):
|
56 |
"""Generate sample data as backup"""
|
|
|
66 |
|
67 |
return pd.DataFrame(data, index=dates)
|
68 |
|
69 |
+
# Updated S&P 500 Stock List (reduced number due to API rate limits)
|
70 |
+
SP500_TICKERS = [
|
71 |
+
'AAPL', # Apple
|
72 |
+
'MSFT', # Microsoft
|
73 |
+
'GOOGL', # Google
|
74 |
+
'AMZN', # Amazon
|
75 |
+
'TSLA' # Tesla
|
76 |
+
]
|
77 |
|
78 |
def calculate_portfolio_metrics(weights, returns):
|
79 |
portfolio_return = np.sum(returns.mean() * weights) * 252
|
|
|
106 |
|
107 |
def output_results(risk_level):
|
108 |
try:
|
109 |
+
# Select random tickers (reduced number due to API rate limits)
|
110 |
+
selected_tickers = random.sample(SP500_TICKERS, min(len(SP500_TICKERS), 3))
|
111 |
|
112 |
# Fetch real stock data
|
113 |
stocks_df = fetch_stock_data(selected_tickers)
|