Update app.py
Browse files
app.py
CHANGED
@@ -6,43 +6,58 @@ import plotly.express as px
|
|
6 |
import scipy.optimize as sco
|
7 |
from datetime import datetime, timedelta
|
8 |
import random
|
9 |
-
import
|
10 |
import time
|
11 |
|
12 |
def fetch_stock_data(tickers):
|
13 |
-
"""Fetch real stock data using
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
print(f"No data received for {tickers[0]}")
|
28 |
-
return generate_sample_data(tickers)
|
29 |
-
return pd.DataFrame(data['Close'])
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
close_prices[ticker] = data[ticker]['Close']
|
36 |
-
|
37 |
-
if close_prices.empty:
|
38 |
-
print("No data received for any ticker")
|
39 |
-
return generate_sample_data(tickers)
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
return generate_sample_data(tickers)
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
def generate_sample_data(tickers):
|
48 |
"""Generate sample data as backup"""
|
@@ -58,18 +73,13 @@ def generate_sample_data(tickers):
|
|
58 |
|
59 |
return pd.DataFrame(data, index=dates)
|
60 |
|
61 |
-
#
|
62 |
SP500_TICKERS = [
|
63 |
'AAPL', # Apple
|
64 |
'MSFT', # Microsoft
|
65 |
-
'
|
66 |
'AMZN', # Amazon
|
67 |
-
'TSLA'
|
68 |
-
'NVDA', # NVIDIA
|
69 |
-
'META', # Meta
|
70 |
-
'BRK-B', # Berkshire Hathaway
|
71 |
-
'JPM', # JPMorgan Chase
|
72 |
-
'V' # Visa
|
73 |
]
|
74 |
|
75 |
def calculate_portfolio_metrics(weights, returns):
|
@@ -103,8 +113,8 @@ def simulate_investment(weights, mu, years, initial_investment=10000):
|
|
103 |
|
104 |
def output_results(risk_level):
|
105 |
try:
|
106 |
-
# Select random tickers
|
107 |
-
selected_tickers = random.sample(SP500_TICKERS, min(len(SP500_TICKERS),
|
108 |
|
109 |
# Fetch real stock data
|
110 |
stocks_df = fetch_stock_data(selected_tickers)
|
@@ -223,3 +233,4 @@ with gr.Blocks(theme=gr.themes.Soft()) as app:
|
|
223 |
)
|
224 |
|
225 |
if __name__ == "__main__":
|
|
|
|
6 |
import scipy.optimize as sco
|
7 |
from datetime import datetime, timedelta
|
8 |
import random
|
9 |
+
import requests
|
10 |
import time
|
11 |
|
12 |
def fetch_stock_data(tickers):
|
13 |
+
"""Fetch real stock data using Alpha Vantage API"""
|
14 |
+
API_KEY = "Y86RZ52NQ8YVX7F6"
|
15 |
+
BASE_URL = "https://www.alphavantage.co/query"
|
16 |
+
all_data = {}
|
17 |
+
|
18 |
+
for ticker in tickers:
|
19 |
+
try:
|
20 |
+
# Use TIME_SERIES_DAILY for daily data
|
21 |
+
params = {
|
22 |
+
"function": "TIME_SERIES_DAILY",
|
23 |
+
"symbol": ticker,
|
24 |
+
"apikey": API_KEY,
|
25 |
+
"outputsize": "full"
|
26 |
+
}
|
|
|
|
|
|
|
27 |
|
28 |
+
print(f"Fetching data for {ticker}...")
|
29 |
+
response = requests.get(BASE_URL, params=params)
|
30 |
+
response.raise_for_status()
|
31 |
+
data = response.json()
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
if "Time Series (Daily)" in data:
|
34 |
+
daily_data = data["Time Series (Daily)"]
|
35 |
+
# Convert to DataFrame
|
36 |
+
df = pd.DataFrame.from_dict(daily_data, orient='index')
|
37 |
+
df = df.astype(float)
|
38 |
+
# Use adjusted close price
|
39 |
+
all_data[ticker] = df['4. close'].iloc[:252] # Get last year of data
|
40 |
+
print(f"Successfully fetched data for {ticker}")
|
41 |
+
else:
|
42 |
+
print(f"No data found for {ticker}")
|
43 |
+
if "Note" in data:
|
44 |
+
print("API Message:", data["Note"])
|
45 |
+
|
46 |
+
# Add delay between requests (Alpha Vantage has a rate limit)
|
47 |
+
time.sleep(12) # 12 second delay between requests
|
48 |
+
|
49 |
+
except Exception as e:
|
50 |
+
print(f"Error fetching {ticker}: {str(e)}")
|
51 |
+
continue
|
52 |
+
|
53 |
+
if not all_data:
|
54 |
+
print("No data received, using backup data")
|
55 |
return generate_sample_data(tickers)
|
56 |
+
|
57 |
+
# Combine all data and align dates
|
58 |
+
df = pd.DataFrame(all_data)
|
59 |
+
df = df.sort_index(ascending=True)
|
60 |
+
return df
|
61 |
|
62 |
def generate_sample_data(tickers):
|
63 |
"""Generate sample data as backup"""
|
|
|
73 |
|
74 |
return pd.DataFrame(data, index=dates)
|
75 |
|
76 |
+
# Updated S&P 500 Stock List (reduced number due to API rate limits)
|
77 |
SP500_TICKERS = [
|
78 |
'AAPL', # Apple
|
79 |
'MSFT', # Microsoft
|
80 |
+
'GOOGL', # Google
|
81 |
'AMZN', # Amazon
|
82 |
+
'TSLA' # Tesla
|
|
|
|
|
|
|
|
|
|
|
83 |
]
|
84 |
|
85 |
def calculate_portfolio_metrics(weights, returns):
|
|
|
113 |
|
114 |
def output_results(risk_level):
|
115 |
try:
|
116 |
+
# Select random tickers (reduced number due to API rate limits)
|
117 |
+
selected_tickers = random.sample(SP500_TICKERS, min(len(SP500_TICKERS), 3))
|
118 |
|
119 |
# Fetch real stock data
|
120 |
stocks_df = fetch_stock_data(selected_tickers)
|
|
|
233 |
)
|
234 |
|
235 |
if __name__ == "__main__":
|
236 |
+
app.launch()
|