File size: 1,693 Bytes
f357513
4297655
 
f357513
 
4297655
f357513
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06ee17b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import torch
import gradio as gr

from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from peft import PeftModel, PeftConfig

device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
peft_model_id = "kimmeoungjun/qlora-koalpaca"
config = PeftConfig.from_pretrained(peft_model_id)
model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path)
model = PeftModel.from_pretrained(model, peft_model_id).to(device)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)

def my_split(s, seps):
    res = [s]
    for sep in seps:
        s, res = res, []
        for seq in s:
            res += seq.split(sep)
    return res

def chat_base(input):
  p = input
  input_ids = tokenizer(p, return_tensors="pt").input_ids.to(device)
  gen_tokens = model.generate(input_ids, do_sample=True, early_stopping=True, do_sample=True, eos_token_id=2,)
  gen_text = tokenizer.batch_decode(gen_tokens)[0]
  # print(gen_text)
  result = gen_text[len(p):]   
  # print(">", result)
  result = my_split(result, [']', '\n'])[1]
  # print(">>", result)
  # print(">>>", result)
  return result

def chat(message):
    history = gr.get_state() or []
    print(history)
    response = chat_base(message)
    history.append((message, response))
    gr.set_state(history)
    html = "<div class='chatbot'>"
    for user_msg, resp_msg in history:
        html += f"<div class='user_msg'>{user_msg}</div>"
        html += f"<div class='resp_msg'>{resp_msg}</div>"
    html += "</div>"
    return response

iface = gr.Interface(chat_base, gr.inputs.Textbox(label="물어보세요"), "text", allow_screenshot=False, allow_flagging=False)
iface.launch()