kiwhansong's picture
download dataset from hf
78c8e0b
raw
history blame
8.48 kB
from pathlib import Path
import spaces
import gradio as gr
import imageio
import torch
from torchvision.datasets.utils import download_and_extract_archive
from PIL import Image
from omegaconf import OmegaConf
from algorithms.dfot import DFoTVideoPose
from utils.ckpt_utils import download_pretrained
from utils.huggingface_utils import download_from_hf
from datasets.video.utils.io import read_video
from datasets.video import RealEstate10KAdvancedVideoDataset
from export import export_to_video
DATASET_URL = "https://huggingface.co/kiwhansong/DFoT/resolve/main/datasets/RealEstate10K_Tiny.tar.gz"
DATASET_DIR = Path("data/real-estate-10k-tiny")
LONG_LENGTH = 20 # seconds
if not DATASET_DIR.exists():
DATASET_DIR.mkdir(parents=True)
download_and_extract_archive(
DATASET_URL,
DATASET_DIR.parent,
remove_finished=True,
)
metadata = torch.load(DATASET_DIR / "metadata" / "test.pt", weights_only=False)
video_list = [
read_video(path).permute(0, 3, 1, 2) / 255.0 for path in metadata["video_paths"]
]
first_frame_list = [
(video[0] * 255).permute(1, 2, 0).numpy().clip(0, 255).astype("uint8")
for video in video_list
]
poses_list = [
torch.cat(
[
poses[:, :4],
poses[:, 6:],
],
dim=-1,
).to(torch.float32)
for poses in (
torch.load(DATASET_DIR / "test_poses" / f"{path.stem}.pt")
for path in metadata["video_paths"]
)
]
# pylint: disable-next=no-value-for-parameter
dfot = DFoTVideoPose.load_from_checkpoint(
checkpoint_path=download_pretrained("pretrained:DFoT_RE10K.ckpt"),
cfg=OmegaConf.load("config.yaml"),
).eval()
dfot.to("cuda")
def prepare_long_gt_video(idx: int):
video = video_list[idx]
indices = torch.linspace(0, video.size(0) - 1, LONG_LENGTH * 10, dtype=torch.long)
return export_to_video(video[indices], fps=10)
@spaces.GPU(duration=120)
@torch.no_grad()
def single_image_to_long_video(idx: int, guidance_scale: float, fps: int, progress=gr.Progress(track_tqdm=True)):
video = video_list[idx]
poses = poses_list[idx]
indices = torch.linspace(0, video.size(0) - 1, LONG_LENGTH * fps, dtype=torch.long)
xs = video[indices].unsqueeze(0).to("cuda")
conditions = poses[indices].unsqueeze(0).to("cuda")
dfot.cfg.tasks.prediction.history_guidance.guidance_scale = guidance_scale
dfot.cfg.tasks.prediction.keyframe_density = 0.6 / fps
# dfot.cfg.tasks.interpolation.history_guidance.guidance_scale = guidance_scale
gen_video = dfot._unnormalize_x(
dfot._predict_videos(
dfot._normalize_x(xs),
conditions,
)
)
return export_to_video(gen_video[0].detach().cpu(), fps=fps)
# Create the Gradio Blocks
with gr.Blocks(theme=gr.themes.Base(primary_hue="teal")) as demo:
gr.HTML(
"""
<style>
[data-tab-id="task-1"], [data-tab-id="task-2"], [data-tab-id="task-3"] {
font-size: 16px !important;
font-weight: bold;
}
</style>
"""
)
gr.Markdown("# Diffusion Forcing Transformer and History Guidance")
gr.Markdown(
"### Official Interactive Demo for [_History-guided Video Diffusion_](todo)"
)
with gr.Row():
gr.Button(value="🌐 Website", link="todo")
gr.Button(value="📄 Paper", link="https://boyuan.space/history-guidance")
gr.Button(
value="💻 Code",
link="https://github.com/kwsong0113/diffusion-forcing-transformer",
)
gr.Button(
value="🤗 Pretrained Models", link="https://huggingface.co/kiwhansong/DFoT"
)
with gr.Tab("Single Image → Long Video", id="task-1"):
gr.Markdown(
"""
## Demo 2: Single Image → Long Video
> #### **TL;DR:** _Diffusion Forcing Transformer, with History Guidance, can stably generate long videos, via sliding window rollouts and interpolation._
"""
)
stage = gr.State(value="Selection")
selected_index = gr.State(value=None)
@gr.render(inputs=[stage, selected_index])
def render_stage(s, idx):
match s:
case "Selection":
image_gallery = gr.Gallery(
value=first_frame_list,
label="Select an image to animate",
columns=[8],
selected_index=idx,
)
@image_gallery.select(inputs=None, outputs=selected_index)
def update_selection(selection: gr.SelectData):
return selection.index
select_button = gr.Button("Select")
@select_button.click(inputs=selected_index, outputs=stage)
def move_to_generation(idx: int):
if idx is None:
gr.Warning("Image not selected!")
return "Selection"
else:
return "Generation"
case "Generation":
with gr.Row():
gr.Image(value=first_frame_list[idx], label="Input Image")
# gr.Video(value=metadata["video_paths"][idx], label="Ground Truth Video")
gr.Video(value=prepare_long_gt_video(idx), label="Ground Truth Video")
video = gr.Video(label="Generated Video")
with gr.Column():
guidance_scale = gr.Slider(
minimum=1,
maximum=6,
value=4,
step=0.5,
label="History Guidance Scale",
info="Without history guidance: 1.0; Recommended: 4.0",
interactive=True,
)
fps = gr.Slider(
minimum=1,
maximum=10,
value=4,
step=1,
label="FPS",
info=f"A {LONG_LENGTH}-second video will be generated at this FPS; Decrease for faster generation; Increase for a smoother video",
interactive=True,
)
generate_button = gr.Button("Generate Video").click(
fn=single_image_to_long_video,
inputs=[selected_index, guidance_scale, fps],
outputs=video,
)
# def generate_video(idx: int):
# gr.Video(value=single_image_to_long_video(idx))
# Function to update the state with the selected index
# def show_warning(selection: gr.SelectData):
# gr.Warning(f"Your choice is #{selection.index}, with image: {selection.value['image']['path']}!")
# # image_gallery.select(fn=show_warning, inputs=None)
# # Show the generate button only if an image is selected
# selected_index.change(fn=lambda idx: idx is not None, inputs=selected_index, outputs=generate_button)
with gr.Tab("Any Images → Video", id="task-2"):
gr.Markdown(
"""
## Demo 1: Any Images → Video
> #### **TL;DR:** _Diffusion Forcing Transformer is a flexible model that can generate videos given variable number of context frames._
"""
)
input_text_1 = gr.Textbox(
lines=2, placeholder="Enter text for Video Model 1..."
)
output_video_1 = gr.Video()
generate_button_1 = gr.Button("Generate Video")
with gr.Tab("Single Image → Extremely Long Video", id="task-3"):
gr.Markdown(
"""
## Demo 3: Single Image → Extremely Long Video
> #### **TL;DR:** _Diffusion Forcing Transformer is a flexible model that can generate videos given **variable number of context frames**._
"""
)
input_text_2 = gr.Textbox(
lines=2, placeholder="Enter text for Video Model 2..."
)
output_video_2 = gr.Video()
generate_button_2 = gr.Button("Generate Video")
if __name__ == "__main__":
demo.launch()