File size: 18,427 Bytes
6931cbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
import time
s2 = time.time()
import numpy as np
import streamlit as st

import json
from abc import ABC, abstractmethod
from typing import List, Dict, Any, Tuple
from collections import defaultdict
# import wandb
import numpy as np
from tqdm import tqdm
from datetime import datetime, date
import pickle
from datasets import load_dataset
import os
from nltk.corpus import stopwords
import nltk
from openai import OpenAI
import anthropic
import time
from collections import Counter

try:
    stopwords.words('english')
except:
    nltk.download('stopwords')
    stopwords.words('english')


openai_key = st.secrets['openai_key']
anthropic_key = st.secrets['anthropic_key']
# anthropic_key = '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'

@st.cache_data
def load_astro_meta():
    print('load astro meta')
    return load_dataset('arxiv_corpus/', split = "train")

@st.cache_data
def load_index_mapping(index_mapping_path):
    print("Loading index mapping...")
    with open(index_mapping_path, 'rb') as f:
        temp = pickle.load(f)
    return temp

@st.cache_data
def load_embeddings(embeddings_path):
    print("Loading embedding")
    return np.load(embeddings_path)

@st.cache_data
def load_metadata(meta_path):
    print("Loading metadata...")
    with open(meta_path, 'r') as f:
        metadata = json.load(f)
    return metadata

# @st.cache_data
def load_umapcoords(umap_path):
    print('loading umap coords')
    with open(umap_path, "rb") as fp:   #Pickling
        umap = pickle.load(fp)
    return umap


class EmbeddingClient:
    def __init__(self, client: OpenAI, model: str = "text-embedding-3-small"):
        self.client = client
        self.model = model

    def embed(self, text: str) -> np.ndarray:
        embedding = self.client.embeddings.create(input=[text], model=self.model).data[0].embedding
        return np.array(embedding, dtype=np.float32)

    def embed_batch(self, texts: List[str]) -> List[np.ndarray]:
        embeddings = self.client.embeddings.create(input=texts, model=self.model).data
        return [np.array(embedding.embedding, dtype=np.float32) for embedding in embeddings]

class RetrievalSystem(ABC):
    @abstractmethod
    def retrieve(self, query: str, arxiv_id: str, top_k: int = 100) -> List[str]:
        pass

    def parse_date(self, arxiv_id: str) -> datetime:
        if arxiv_id is None:
            return date.today()

        if arxiv_id.startswith('astro-ph'):
            arxiv_id = arxiv_id.split('astro-ph')[1].split('_arXiv')[0]
        try:
            year = int("20" + arxiv_id[:2])
            month = int(arxiv_id[2:4])
        except:
            year = 2023
            month = 1
        return date(year, month, 1)

class EmbeddingRetrievalSystem(RetrievalSystem):
    def __init__(self, embeddings_path: str = "local_files/embeddings_matrix.npy",
                 documents_path: str = "local_files/documents.pkl",
                 index_mapping_path: str = "local_files/index_mapping.pkl",
                 metadata_path: str = "local_files/metadata.json",
                 weight_citation = False, weight_date = False, weight_keywords = False):

        self.embeddings_path = embeddings_path
        self.documents_path = documents_path
        self.index_mapping_path = index_mapping_path
        self.metadata_path = metadata_path
        self.weight_citation = weight_citation
        self.weight_date = weight_date
        self.weight_keywords = weight_keywords

        self.embeddings = None
        self.documents = None
        self.index_mapping = None
        self.metadata = None
        self.document_dates = []

        self.load_data()
        self.init_filters()

        # config = yaml.safe_load(open('../config.yaml', 'r'))
        self.client = EmbeddingClient(OpenAI(api_key=openai_key))
        self.anthropic_client = anthropic.Anthropic(api_key=anthropic_key)

    def generate_metadata(self):
        astro_meta = load_astro_meta()
        # dataset = load_dataset('arxiv_corpus/')
        keys = list(astro_meta[0].keys())
        keys.remove('abstract')
        keys.remove('introduction')
        keys.remove('conclusions')

        self.metadata = {}
        for paper in astro_meta:
            id_str = paper['arxiv_id']
            self.metadata[id_str] = {key: paper[key] for key in keys}

        with open(self.metadata_path, 'w') as f:
            json.dump(self.metadata, f)
            st.markdown("Wrote metadata to {}".format(self.metadata_path))
#

    def load_data(self):
        # print("Loading embeddings...")

        # self.embeddings = np.load(self.embeddings_path)
        self.embeddings = load_embeddings(self.embeddings_path)
        st.sidebar.success("Loaded embeddings")

        # with open(self.index_mapping_path, 'rb') as f:
        #     self.index_mapping = pickle.load(f)
        self.index_mapping = load_index_mapping(self.index_mapping_path)
        st.sidebar.success("Loaded index mapping")

        # print("Loading documents...")
        # with open(self.documents_path, 'rb') as f:
            # self.documents = pickle.load(f)
        dataset = load_astro_meta()
        st.sidebar.success("Loaded documents")


        print("Processing document dates...")
        # self.document_dates = {doc.id: self.parse_date(doc.arxiv_id) for doc in self.documents}
        aids = dataset['arxiv_id']
        adsids = dataset['id']
        self.document_dates = {adsids[i]: self.parse_date(aids[i]) for i in range(len(aids))}

        if os.path.exists(self.metadata_path):
            self.metadata = load_metadata(self.metadata_path)
            print("Loaded metadata.")
        else:
            print("Could not find path; generating metadata.")
            self.generate_metadata()

        print("Data loaded successfully.")

    def init_filters(self):
        print("Loading filters...")
        self.citation_filter = CitationFilter(metadata = self.metadata)

        self.date_filter = DateFilter(document_dates = self.document_dates)

        self.keyword_filter = KeywordFilter(index_path = "local_files/keyword_index.json", metadata = self.metadata, remove_capitals = True)

    def retrieve(self, query: str, arxiv_id: str = None, top_k: int = 10, return_scores = False, time_result = None) -> List[Tuple[str, str, float]]:
        query_date = self.parse_date(arxiv_id)
        query_embedding = self.get_query_embedding(query)

        # Judge time relevance
        if time_result is None:
            if self.weight_date: time_result, time_taken = analyze_temporal_query(query, self.anthropic_client)
            else: time_result = {'has_temporal_aspect': False, 'expected_year_filter': None, 'expected_recency_weight': None}

        top_results = self.rank_and_filter(query, query_embedding, query_date, top_k, return_scores = return_scores, time_result = time_result)

        return top_results

    def rank_and_filter(self, query, query_embedding: np.ndarray, query_date, top_k: int = 10, return_scores = False, time_result = None) -> List[Tuple[str, str, float]]:
        # Calculate similarities
        similarities = np.dot(self.embeddings, query_embedding)

        # Filter and rank results
        if self.weight_keywords: keyword_matches = self.keyword_filter.filter(query)

        results = []
        for doc_id, mappings in self.index_mapping.items():
            if not self.weight_keywords or doc_id in keyword_matches:
                abstract_sim = similarities[mappings['abstract']] if 'abstract' in mappings else -np.inf
                conclusions_sim = similarities[mappings['conclusions']] if 'conclusions' in mappings else -np.inf

                if abstract_sim > conclusions_sim:
                    results.append([doc_id, "abstract", abstract_sim])
                else:
                    results.append([doc_id, "conclusions", conclusions_sim])


        # Sort and weight and get top-k results
        if time_result['has_temporal_aspect']:
            filtered_results = self.date_filter.filter(results, boolean_date = time_result['expected_year_filter'], time_score = time_result['expected_recency_weight'], max_date = query_date)
        else:
            filtered_results = self.date_filter.filter(results, max_date = query_date)

        if self.weight_citation: self.citation_filter.filter(filtered_results)

        top_results = sorted(filtered_results, key=lambda x: x[2], reverse=True)[:top_k]

        if return_scores:
            return {doc[0]: doc[2] for doc in top_results}

        # Only keep the document IDs
        top_results = [doc[0] for doc in top_results]
        return top_results

    def get_query_embedding(self, query: str) -> np.ndarray:
        embedding = self.client.embed(query)
        return np.array(embedding, dtype = np.float32)

    def get_document_texts(self, doc_ids: List[str]) -> List[Dict[str, str]]:
        results = []
        for doc_id in doc_ids:
            doc = next((d for d in self.documents if d.id == doc_id), None)
            if doc:
                results.append({
                    'id': doc.id,
                    'abstract': doc.abstract,
                    'conclusions': doc.conclusions
                })
            else:
                print(f"Warning: Document with ID {doc_id} not found.")
        return results

    def retrieve_context(self, query, top_k, sections = ["abstract", "conclusions"], **kwargs):
        docs = self.retrieve(query, top_k = top_k, return_scores = True, **kwargs)
        docids = docs.keys()
        doctexts = self.get_document_texts(docids) # avoid having to do this repetitively?
        context_str = ""
        doclist = []

        for docid, doctext in zip(docids, doctexts):
            for section in sections:
                context_str += f"{docid}: {doctext[section]}\n"

            meta_row = self.metadata[docid]
            doclist.append(Document(docid, doctext['abstract'], doctext['conclusions'], docid, title = meta_row['title'],
                                    score = docs[docid], n_citation = meta_row['citation_count'], keywords = meta_row['keyword_search']))

        return context_str, doclist


class Filter():
    def filter(self, query: str, arxiv_id: str) -> List[str]:
        pass

class CitationFilter(Filter): # can do it with all metadata
    def __init__(self, metadata):
        self.metadata = metadata
        self.citation_counts = {doc_id: self.metadata[doc_id]['citation_count'] for doc_id in self.metadata}

    def citation_weight(self, x, shift, scale):
        return 1 / (1 + np.exp(-1 * (x - shift) / scale)) # sigmoid function

    def filter(self, doc_scores, weight = 0.1): # additive weighting
        citation_count = np.array([self.citation_counts[doc[0]] for doc in doc_scores])
        cmean, cstd = np.median(citation_count), np.std(citation_count)
        citation_score = self.citation_weight(citation_count, cmean, cstd)

        for i, doc in enumerate(doc_scores):
            doc_scores[i][2] += weight * citation_score[i]

class DateFilter(Filter): # include time weighting eventually
    def __init__(self, document_dates):
        self.document_dates = document_dates

    def parse_date(self, arxiv_id: str) -> datetime: # only for documents
        if arxiv_id.startswith('astro-ph'):
            arxiv_id = arxiv_id.split('astro-ph')[1].split('_arXiv')[0]
        try:
            year = int("20" + arxiv_id[:2])
            month = int(arxiv_id[2:4])
        except:
            year = 2023
            month = 1
        return date(year, month, 1)

    def weight(self, time, shift, scale):
        return 1 / (1 + np.exp((time - shift) / scale))

    def evaluate_filter(self, year, filter_string):
        try:
            # Use ast.literal_eval to safely evaluate the expression
            result = eval(filter_string, {"__builtins__": None}, {"year": year})
            return result
        except Exception as e:
            print(f"Error evaluating filter: {e}")
            return False

    def filter(self, docs, boolean_date = None, min_date = None, max_date = None, time_score = 0):
        filtered = []

        if boolean_date is not None:
            boolean_date = boolean_date.replace("AND", "and").replace("OR", "or")
            for doc in docs:
                if self.evaluate_filter(self.document_dates[doc[0]].year, boolean_date):
                    filtered.append(doc)

        else:
            if min_date == None: min_date = date(1990, 1, 1)
            if max_date == None: max_date = date(2024, 7, 3)

            for doc in docs:
                if self.document_dates[doc[0]] >= min_date and self.document_dates[doc[0]] <= max_date:
                    filtered.append(doc)

        if time_score is not None: # apply time weighting
            for i, item in enumerate(filtered):
                time_diff = (max_date - self.document_dates[filtered[i][0]]).days / 365
                filtered[i][2] += time_score * 0.1 * self.weight(time_diff, 5, 5)

        return filtered

class KeywordFilter(Filter):
    def __init__(self, index_path: str = "local_files/keyword_index.json",
                 remove_capitals: bool = True, metadata = None, ne_only = True, verbose = False):

        self.index_path = index_path
        self.metadata = metadata
        self.remove_capitals = remove_capitals
        self.ne_only = ne_only
        self.stopwords = set(stopwords.words('english'))
        self.verbose = verbose
        self.index = None

        self.load_or_build_index()

    def preprocess_text(self, text: str) -> str:
        text = ''.join(char for char in text if char.isalnum() or char.isspace())
        if self.remove_capitals: text = text.lower()
        return ' '.join(word for word in text.split() if word.lower() not in self.stopwords)

    def build_index(self): # include the title in the index
        print("Building index...")
        self.index = {}

        for i, index in tqdm(enumerate(self.metadata)):
            paper = self.metadata[index]
            title = paper['title'][0]
            title_keywords = set() #set(self.parse_doc(title) + self.get_propn(title))
            for keyword in set(paper['keyword_search']) | title_keywords:
                term = ' '.join(word for word in keyword.lower().split() if word.lower() not in self.stopwords)
                if term not in self.index:
                    self.index[term] = []

                self.index[term].append(paper['arxiv_id'])

        with open(self.index_path, 'w') as f:
            json.dump(self.index, f)

    def load_index(self):
        print("Loading existing index...")
        with open(self.index_path, 'rb') as f:
            self.index = json.load(f)

        print("Index loaded successfully.")

    def load_or_build_index(self):
        if os.path.exists(self.index_path):
            self.load_index()
        else:
            self.build_index()

    def parse_doc(self, doc):
        local_kws = []

        for phrase in doc._.phrases:
            local_kws.append(phrase.text.lower())

        return [self.preprocess_text(word) for word in local_kws]

    def get_propn(self, doc):
        result = []

        working_str = ''
        for token in doc:
            if(token.text in nlp.Defaults.stop_words or token.text in punctuation):
                if working_str != '':
                    result.append(working_str.strip())
                    working_str = ''

            if(token.pos_ == "PROPN"):
                working_str += token.text + ' '

        if working_str != '': result.append(working_str.strip())

        return [self.preprocess_text(word) for word in result]

    def filter(self, query: str, doc_ids = None):
        doc = nlp(query)
        query_keywords = self.parse_doc(doc)
        nouns = self.get_propn(doc)
        if self.verbose: print('keywords:', query_keywords)
        if self.verbose: print('proper nouns:', nouns)

        filtered = set()
        if len(query_keywords) > 0 and not self.ne_only:
            for keyword in query_keywords:
                if keyword != '' and keyword in self.index.keys(): filtered |= set(self.index[keyword])

        if len(nouns) > 0:
            ne_results = set()
            for noun in nouns:
                if noun in self.index.keys(): ne_results |= set(self.index[noun])

            if self.ne_only: filtered = ne_results # keep only named entity results
            else: filtered &= ne_results # take the intersection

        if doc_ids is not None: filtered &= doc_ids # apply filter to results
        return filtered

def get_cluster_keywords(clust_ids, all_keywords):

    tagstr = ''
    clust_tags = []
    for i in range(len(clust_ids)):
        clust_paper_kw = []
        for j in range(len(all_keywords[clust_ids[i]])):
            clust_tags.append(all_keywords[clust_ids[i]][j])
    tags = Counter(clust_tags).most_common(30)
    for i in range(len(tags)):
        # print(tags[i][0])
        if len(tags[i][0]) > 2:
            tagstr = tagstr + tags[i][0]+ ', '
    return tagstr

def get_keywords(query, ret_indices, all_keywords):
    
    kws = get_cluster_keywords(ret_indices, all_keywords)

    kw_prompt = """You are an expert research assistant. Here are a list of keywords corresponding to the topics that a query and its answer are about that you need to synthesize into a succinct summary:
    ["""+kws+"""]

    First, find the keywords that are most relevant to answering the question, and then print them in numbered order. Keywords should be a few words at most. Do not list more than five keywords.

    If there are no relevant quotes, write “No relevant keywords” instead.

    Thus, the format of your overall response should look like what’s shown between the tags. Make sure to follow the formatting and spacing exactly.

    Keywords:
    [1] Milky Way galaxy
    [2] Good agreement
    [3] Bayesian
    [4] Observational constraints
    [5] Globular clusters
    [6] Kinematic data

    If the question cannot be answered by the document, say so."""

    client = anthropic.Anthropic(api_key=anthropic_key,)
    message = client.messages.create(model="claude-3-haiku-20240307",max_tokens=200,temperature=0,system=kw_prompt,
                                     messages=[{"role": "user","content": [{"type": "text","text": query}]}])
    
    return message.content[0].text