Spaces:
Sleeping
Sleeping
File size: 6,569 Bytes
7e0431e e5a5157 99b23ed e5a5157 99b23ed 7e0431e 99b23ed 7e0431e e5a5157 7e0431e 99b23ed 7e0431e e5a5157 7e0431e e5a5157 7e0431e 99b23ed 7e0431e e5a5157 99b23ed 7e0431e e5a5157 82c845d e5a5157 8628478 e5a5157 7e0431e 99b23ed 8628478 99b23ed e5a5157 99b23ed e5a5157 99b23ed e5a5157 99b23ed e5a5157 7e0431e 99b23ed e5a5157 99b23ed e5a5157 7e0431e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
import streamlit as st
from streamlit_mic_recorder import mic_recorder
from transformers import pipeline
import torch
from transformers import BertTokenizer, BertForSequenceClassification, AutoModelForSequenceClassification, AutoTokenizer
from transformers import WhisperForConditionalGeneration, WhisperProcessor
import numpy as np
import pandas as pd
import time
def callback():
if st.session_state.my_recorder_output:
audio_bytes = st.session_state.my_recorder_output['bytes']
st.audio(audio_bytes)
def translate(inputs, model="openai/whisper-medium"):
pipe = pipeline("automatic-speech-recognition", model=model)
# transcribe_result = pipe(upload, generate_kwargs={'task': 'transcribe'})
translate_result = pipe(inputs, generate_kwargs={'task': 'translate'})
return translate_result['text']
def encode_depracated(docs, tokenizer):
'''
This function takes list of texts and returns input_ids and attention_mask of texts
'''
encoded_dict = tokenizer.batch_encode_plus(docs, add_special_tokens=True, max_length=128, padding='max_length',
return_attention_mask=True, truncation=True, return_tensors='pt')
input_ids = encoded_dict['input_ids']
attention_masks = encoded_dict['attention_mask']
return input_ids, attention_masks
# def load_model_deprecated():
# CUSTOMMODEL_PATH = "./bert-itserviceclassification"
# PRETRAINED_LM = "bert-base-uncased"
# tokenizer = BertTokenizer.from_pretrained(PRETRAINED_LM, do_lower_case=True)
# model = BertForSequenceClassification.from_pretrained(PRETRAINED_LM,
# num_labels=8,
# output_attentions=False,
# output_hidden_states=False)
# model.load_state_dict(torch.load(CUSTOMMODEL_PATH, map_location ='cpu'))
# return model, tokenizer
def load_model():
PRETRAINED_LM = "kkngan/bert-base-uncased-it-service-classification"
model = AutoModelForSequenceClassification.from_pretrained(PRETRAINED_LM, num_labels=8)
tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_LM)
return model, tokenizer
def predict(text, model, tokenizer):
lookup_key ={0: 'Hardware',
1: 'Access',
2: 'Miscellaneous',
3: 'HR Support',
4: 'Purchase',
5: 'Administrative rights',
6: 'Storage',
7: 'Internal Project'}
# with torch.no_grad():
# input_ids, att_mask = encode([text], tokenizer)
# logits = model(input_ids = input_ids, attention_mask=att_mask).logits
inputs = tokenizer(text,
padding = True,
truncation = True,
return_tensors='pt')
outputs = model(**inputs)
predicted_class_id = outputs.logits.argmax().item()
predicted_label = lookup_key.get(predicted_class_id)
confidence = torch.nn.functional.softmax(outputs.logits, dim=-1).cpu().detach().numpy()
return predicted_label, confidence
def main():
st.set_page_config(layout="wide", page_title="NLP IT Service Classification", page_icon="🤖",)
st.markdown('<b>🤖 Welcome to IT Service Classification Assistant!!! 🤖</b>', unsafe_allow_html=True)
st.write(f'\n')
st.write(f'\n')
with st.sidebar:
st.image('front_page_image.jpg' , use_column_width=True)
text_to_speech_model = st.selectbox("Pick select a speech to text model",
["openai/whisper-base", "openai/whisper-medium", "openai/whisper-large", "openai/whisper-large-v3"])
options = st.selectbox("Pick select an input method", ["Start a recording", "Upload an audio", "Enter a transcript"])
if options == "Start a recording":
audio = mic_recorder(key='my_recorder', callback=callback)
elif options == "Upload an audio":
audio = st.file_uploader("Please upload an audio", type=["wav", "mp3"])
else:
text = st.text_area("Please input the transcript (Only support English)")
button = st.button('Submit')
if button:
with st.spinner(text="Loading... It may take a while if you are running the app for the first time."):
start_time = time.time()
model, tokenizer = load_model()
if options == "Start a recording":
# transcibe_text, translate_text = transcribe_and_translate(upload=audio["bytes"])
translate_text = translate(inputs=audio["bytes"], model=text_to_speech_model)
prediction, confidence = predict(text=translate_text, model=model, tokenizer=tokenizer)
elif options == "Upload an audio":
# transcibe_text, translate_text = transcribe_and_translate(upload=audio.getvalue())
translate_text = translate(inputs=audio.getvalue(), model=text_to_speech_model)
prediction, confidence = predict(text=translate_text, model=model, tokenizer=tokenizer)
else:
translate_text = text
prediction, confidence = predict(text=text, model=model, tokenizer=tokenizer)
end_time = time.time()
# st.markdown('<font color="blue"><b>Transcript:</b></font>', unsafe_allow_html=True)
# st.write(f'{transcibe_text}')
# st.write(f'\n')
# if options != "Enter a transcript":
st.markdown('<font color="purple"><b>(Translated) Text:</b></font>', unsafe_allow_html=True)
st.write(f'{translate_text}')
st.write(f'\n')
st.write(f'\n')
st.markdown('<font color="green"><b>Predicted Class:</b></font>', unsafe_allow_html=True)
st.write(f'{prediction}')
# Convert confidence to bar cart
st.write(f'\n')
st.write(f'\n')
category = ('Hardware', 'Access', 'Miscellaneous', 'HR Support', 'Purchase', 'Administrative rights', 'Storage', 'Internal Project')
confidence = np.array(confidence[0])
df = pd.DataFrame({'Category': category, 'Confidence (%)': confidence * 100})
df['Confidence (%)'] = df['Confidence (%)'].apply(lambda x: round(x, 2))
st.bar_chart(data=df, x='Category', y='Confidence (%)')
# df = df.sort_values(by='Confidence (%)', ascending=False).reset_index(drop=True)
# st.write(df)
st.write(f'\n')
st.write(f'\n')
st.markdown(f'*It took {(end_time-start_time):.2f} sec to process the input', unsafe_allow_html=True)
if __name__ == '__main__':
main() |