File size: 6,569 Bytes
7e0431e
 
 
 
e5a5157
99b23ed
e5a5157
 
99b23ed
 
7e0431e
 
 
 
 
 
99b23ed
 
 
 
 
 
 
7e0431e
e5a5157
7e0431e
 
 
 
 
 
 
 
 
 
99b23ed
 
 
 
 
 
 
 
 
 
7e0431e
 
e5a5157
 
 
 
 
 
 
7e0431e
 
 
 
 
 
 
 
 
e5a5157
 
 
 
 
 
 
 
 
7e0431e
99b23ed
 
7e0431e
 
 
e5a5157
 
 
99b23ed
7e0431e
 
e5a5157
82c845d
 
e5a5157
 
 
 
8628478
e5a5157
 
 
7e0431e
 
99b23ed
8628478
99b23ed
e5a5157
 
99b23ed
 
 
e5a5157
99b23ed
 
 
e5a5157
99b23ed
 
 
 
 
 
 
 
 
 
e5a5157
 
7e0431e
 
99b23ed
 
 
 
 
 
 
 
 
 
 
e5a5157
99b23ed
e5a5157
7e0431e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import streamlit as st
from streamlit_mic_recorder import mic_recorder
from transformers import pipeline
import torch
from transformers import BertTokenizer, BertForSequenceClassification, AutoModelForSequenceClassification, AutoTokenizer
from transformers import WhisperForConditionalGeneration, WhisperProcessor
import numpy as np
import pandas as pd
import time


def callback():
    if st.session_state.my_recorder_output:
        audio_bytes = st.session_state.my_recorder_output['bytes']
        st.audio(audio_bytes)


def translate(inputs, model="openai/whisper-medium"):
    pipe = pipeline("automatic-speech-recognition", model=model)
    # transcribe_result = pipe(upload, generate_kwargs={'task': 'transcribe'})
    translate_result = pipe(inputs, generate_kwargs={'task': 'translate'})
    return translate_result['text']


def encode_depracated(docs, tokenizer):
    '''
    This function takes list of texts and returns input_ids and attention_mask of texts
    '''
    encoded_dict = tokenizer.batch_encode_plus(docs, add_special_tokens=True, max_length=128, padding='max_length',
                            return_attention_mask=True, truncation=True, return_tensors='pt')
    input_ids = encoded_dict['input_ids']
    attention_masks = encoded_dict['attention_mask']
    return input_ids, attention_masks


# def load_model_deprecated():
#     CUSTOMMODEL_PATH = "./bert-itserviceclassification"
#     PRETRAINED_LM = "bert-base-uncased"
#     tokenizer = BertTokenizer.from_pretrained(PRETRAINED_LM, do_lower_case=True)
#     model = BertForSequenceClassification.from_pretrained(PRETRAINED_LM,
#                                                         num_labels=8,
#                                                         output_attentions=False,
#                                                         output_hidden_states=False)
#     model.load_state_dict(torch.load(CUSTOMMODEL_PATH, map_location ='cpu'))
#     return model, tokenizer


def load_model():
    PRETRAINED_LM = "kkngan/bert-base-uncased-it-service-classification"
    model = AutoModelForSequenceClassification.from_pretrained(PRETRAINED_LM, num_labels=8)
    tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_LM)
    return model, tokenizer


def predict(text, model, tokenizer):
    lookup_key ={0: 'Hardware',
    1: 'Access',
    2: 'Miscellaneous',
    3: 'HR Support',
    4: 'Purchase',
    5: 'Administrative rights',
    6: 'Storage',
    7: 'Internal Project'}
    # with torch.no_grad():
    #     input_ids, att_mask = encode([text], tokenizer)
    #     logits = model(input_ids = input_ids, attention_mask=att_mask).logits
    inputs = tokenizer(text,
                   padding = True,
                   truncation = True,
                   return_tensors='pt')
    outputs = model(**inputs)
    predicted_class_id = outputs.logits.argmax().item()
    predicted_label = lookup_key.get(predicted_class_id)
    confidence = torch.nn.functional.softmax(outputs.logits, dim=-1).cpu().detach().numpy()
    return predicted_label, confidence


def main():
    st.set_page_config(layout="wide", page_title="NLP IT Service Classification", page_icon="🤖",)
    st.markdown('<b>🤖 Welcome to IT Service Classification Assistant!!! 🤖</b>', unsafe_allow_html=True)
    st.write(f'\n')
    st.write(f'\n')

    with st.sidebar:
        st.image('front_page_image.jpg' , use_column_width=True)
        text_to_speech_model = st.selectbox("Pick select a speech to text model",
                                            ["openai/whisper-base", "openai/whisper-medium", "openai/whisper-large", "openai/whisper-large-v3"])
        options = st.selectbox("Pick select an input method", ["Start a recording", "Upload an audio", "Enter a transcript"])
        if options == "Start a recording":
            audio = mic_recorder(key='my_recorder', callback=callback)
        elif options == "Upload an audio":
            audio = st.file_uploader("Please upload an audio", type=["wav", "mp3"])
        else:
            text = st.text_area("Please input the transcript (Only support English)")
        button = st.button('Submit')

    if button:
        
        with st.spinner(text="Loading... It may take a while if you are running the app for the first time."):
            start_time = time.time()
            model, tokenizer = load_model()
            if options == "Start a recording":
                # transcibe_text, translate_text = transcribe_and_translate(upload=audio["bytes"])
                translate_text = translate(inputs=audio["bytes"], model=text_to_speech_model)
                prediction, confidence = predict(text=translate_text, model=model, tokenizer=tokenizer)
            elif options == "Upload an audio":
                # transcibe_text, translate_text = transcribe_and_translate(upload=audio.getvalue())
                translate_text = translate(inputs=audio.getvalue(), model=text_to_speech_model)
                prediction, confidence = predict(text=translate_text, model=model, tokenizer=tokenizer)
            else:
                translate_text = text
                prediction, confidence = predict(text=text, model=model, tokenizer=tokenizer)
            end_time = time.time()
        # st.markdown('<font color="blue"><b>Transcript:</b></font>', unsafe_allow_html=True)
        # st.write(f'{transcibe_text}')
        # st.write(f'\n')
        # if options != "Enter a transcript":
        st.markdown('<font color="purple"><b>(Translated) Text:</b></font>', unsafe_allow_html=True)
        st.write(f'{translate_text}')
        st.write(f'\n')
        st.write(f'\n')
        st.markdown('<font color="green"><b>Predicted Class:</b></font>', unsafe_allow_html=True)
        st.write(f'{prediction}')

        # Convert confidence to bar cart
        st.write(f'\n')
        st.write(f'\n')
        category = ('Hardware', 'Access', 'Miscellaneous', 'HR Support', 'Purchase', 'Administrative rights', 'Storage', 'Internal Project')
        confidence = np.array(confidence[0])
        df = pd.DataFrame({'Category': category, 'Confidence (%)': confidence * 100})
        df['Confidence (%)'] = df['Confidence (%)'].apply(lambda x: round(x, 2))
        st.bar_chart(data=df, x='Category', y='Confidence (%)')
        # df = df.sort_values(by='Confidence (%)', ascending=False).reset_index(drop=True)
        # st.write(df)
        st.write(f'\n')
        st.write(f'\n')
        st.markdown(f'*It took {(end_time-start_time):.2f} sec to process the input', unsafe_allow_html=True)

if __name__ == '__main__':
    main()