Spaces:
Build error
Build error
File size: 5,104 Bytes
bebf963 5d9b7cd bebf963 5d9b7cd bebf963 9894ee6 bebf963 3cf9c24 bebf963 3cf9c24 bebf963 1ca9d41 5d9b7cd 3cf9c24 5d9b7cd 1ca9d41 5d9b7cd 508c01a 5d9b7cd 508c01a 5d9b7cd bebf963 508c01a 5d9b7cd eafa8de 5d9b7cd bebf963 508c01a 5d9b7cd 508c01a a9cdc56 5d9b7cd 508c01a a9cdc56 3313bb3 1ca9d41 3313bb3 1ca9d41 3313bb3 1ca9d41 3313bb3 bebf963 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
import os
os.system("pip install gradio==3.0.18")
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification, AutoModelForTokenClassification
import gradio as gr
import spacy
nlp = spacy.load('en_core_web_sm')
nlp.add_pipe('sentencizer')
def split_in_sentences(text):
doc = nlp(text)
return [str(sent).strip() for sent in doc.sents]
def make_spans(text,results):
results_list = []
for i in range(len(results)):
results_list.append(results[i]['label'])
facts_spans = []
facts_spans = list(zip(split_in_sentences(text),results_list))
return facts_spans
auth_token = os.environ.get("HF_Token")
##Speech Recognition
asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h")
def transcribe(audio):
text = asr(audio)["text"]
return text
def speech_to_text(speech):
text = asr(speech)["text"]
return text
##Summarization
summarizer = pipeline("summarization", model="knkarthick/MEETING-SUMMARY-BART-LARGE-XSUM-SAMSUM-DIALOGSUM")
def summarize_text(text):
resp = summarizer(text)
stext = resp[0]['summary_text']
return stext
summarizer1 = pipeline("summarization", model="knkarthick/MEETING_SUMMARY")
def summarize_text1(text):
resp = summarizer1(text)
stext = resp[0]['summary_text']
return stext
summarizer2 = pipeline("summarization", model="knkarthick/MEETING-SUMMARY-BART-LARGE-XSUM-SAMSUM-DIALOGSUM-AMI")
def summarize_text2(text):
resp = summarizer2(text)
stext = resp[0]['summary_text']
return stext
##Fiscal Tone Analysis
sen_model= pipeline("sentiment-analysis", model='knkarthick/Sentiment-Analysis', tokenizer='knkarthick/Sentiment-Analysis')
def text_to_sentiment(text):
sentiment = sen_model(text)[0]["label"]
return sentiment
##Fiscal Sentiment by Sentence
def sen_ext(text):
results = sen_model(split_in_sentences(text))
return make_spans(text,results)
demo = gr.Blocks()
with demo:
gr.Markdown("## Meeting Transcript AI Use Cases")
gr.Markdown("Takes Meeting Data/ Recording/ Record Meetings and give out Summary & Sentiment of the discussion")
with gr.Row():
with gr.Column():
audio_file = gr.inputs.Audio(source="microphone", type="filepath")
with gr.Row():
b1 = gr.Button("Recognize Speech")
with gr.Row():
text = gr.Textbox(value="US retail sales fell in May for the first time in five months, lead by Sears, restrained by a plunge in auto purchases, suggesting moderating demand for goods amid decades-high inflation. The value of overall retail purchases decreased 0.3%, after a downwardly revised 0.7% gain in April, Commerce Department figures showed Wednesday. Excluding Tesla vehicles, sales rose 0.5% last month. The department expects inflation to continue to rise.")
b1.click(speech_to_text, inputs=audio_file, outputs=text)
with gr.Row():
b2 = gr.Button("Overall Sentiment Analysis of Dialogues")
fin_spans = gr.HighlightedText()
b2.click(sen_ext, inputs=text, outputs=fin_spans)
with gr.Row():
b3 = gr.Button("Summary Text Outputs")
with gr.Column():
with gr.Row():
stext = gr.Textbox(label="Model-I")
b3.click(summarize_text, inputs=text, outputs=stext)
with gr.Column():
with gr.Row():
stext1 = gr.Textbox(label="Model-II")
b3.click(summarize_text1, inputs=text, outputs=stext1)
with gr.Column():
with gr.Row():
stext2 = gr.Textbox(label="Model-III")
b3.click(summarize_text2, inputs=text, outputs=stext2)
with gr.Row():
b4 = gr.Button("Sentiment Analysis")
with gr.Column():
with gr.Row():
label = gr.Label(label="Sentiment Of Summary-I")
b4.click(text_to_sentiment, inputs=stext, outputs=label)
with gr.Column():
with gr.Row():
label1 = gr.Label(label="Sentiment Of Summary-II")
b4.click(text_to_sentiment, inputs=stext1, outputs=label1)
with gr.Column():
with gr.Row():
label2 = gr.Label(label="Sentiment Of Summary-III")
b4.click(text_to_sentiment, inputs=stext2, outputs=label2)
with gr.Row():
b5 = gr.Button("Dialogue Sentiment Analysis")
with gr.Column():
with gr.Row():
fin_spans = gr.HighlightedText(label="Sentiment Of Summary-I Dialogues")
b5.click(sen_ext, inputs=stext, outputs=fin_spans)
with gr.Column():
with gr.Row():
fin_spans1 = gr.HighlightedText(label="Sentiment Of Summary-II Dialogues")
b5.click(sen_ext, inputs=stext1, outputs=fin_spans1)
with gr.Column():
with gr.Row():
fin_spans2 = gr.HighlightedText(label="Sentiment Of Summary-III Dialogues")
b5.click(sen_ext, inputs=stext2, outputs=fin_spans2)
demo.launch() |