Spaces:
Running
Running
# Understanding Back-Translation at Scale (Edunov et al., 2018) | |
This page includes pre-trained models from the paper [Understanding Back-Translation at Scale (Edunov et al., 2018)](https://arxiv.org/abs/1808.09381). | |
## Pre-trained models | |
Model | Description | Dataset | Download | |
---|---|---|--- | |
`transformer.wmt18.en-de` | Transformer <br> ([Edunov et al., 2018](https://arxiv.org/abs/1808.09381)) <br> WMT'18 winner | [WMT'18 English-German](http://www.statmt.org/wmt18/translation-task.html) | [download (.tar.gz)](https://dl.fbaipublicfiles.com/fairseq/models/wmt18.en-de.ensemble.tar.gz) <br> See NOTE in the archive | |
## Example usage (torch.hub) | |
We require a few additional Python dependencies for preprocessing: | |
```bash | |
pip install subword_nmt sacremoses | |
``` | |
Then to generate translations from the full model ensemble: | |
```python | |
import torch | |
# List available models | |
torch.hub.list('pytorch/fairseq') # [..., 'transformer.wmt18.en-de', ... ] | |
# Load the WMT'18 En-De ensemble | |
en2de_ensemble = torch.hub.load( | |
'pytorch/fairseq', 'transformer.wmt18.en-de', | |
checkpoint_file='wmt18.model1.pt:wmt18.model2.pt:wmt18.model3.pt:wmt18.model4.pt:wmt18.model5.pt', | |
tokenizer='moses', bpe='subword_nmt') | |
# The ensemble contains 5 models | |
len(en2de_ensemble.models) | |
# 5 | |
# Translate | |
en2de_ensemble.translate('Hello world!') | |
# 'Hallo Welt!' | |
``` | |
## Training your own model (WMT'18 English-German) | |
The following instructions can be adapted to reproduce the models from the paper. | |
#### Step 1. Prepare parallel data and optionally train a baseline (English-German) model | |
First download and preprocess the data: | |
```bash | |
# Download and prepare the data | |
cd examples/backtranslation/ | |
bash prepare-wmt18en2de.sh | |
cd ../.. | |
# Binarize the data | |
TEXT=examples/backtranslation/wmt18_en_de | |
fairseq-preprocess \ | |
--joined-dictionary \ | |
--source-lang en --target-lang de \ | |
--trainpref $TEXT/train --validpref $TEXT/valid --testpref $TEXT/test \ | |
--destdir data-bin/wmt18_en_de --thresholdtgt 0 --thresholdsrc 0 \ | |
--workers 20 | |
# Copy the BPE code into the data-bin directory for future use | |
cp examples/backtranslation/wmt18_en_de/code data-bin/wmt18_en_de/code | |
``` | |
(Optionally) Train a baseline model (English-German) using just the parallel data: | |
```bash | |
CHECKPOINT_DIR=checkpoints_en_de_parallel | |
fairseq-train --fp16 \ | |
data-bin/wmt18_en_de \ | |
--source-lang en --target-lang de \ | |
--arch transformer_wmt_en_de_big --share-all-embeddings \ | |
--dropout 0.3 --weight-decay 0.0 \ | |
--criterion label_smoothed_cross_entropy --label-smoothing 0.1 \ | |
--optimizer adam --adam-betas '(0.9, 0.98)' --clip-norm 0.0 \ | |
--lr 0.001 --lr-scheduler inverse_sqrt --warmup-updates 4000 \ | |
--max-tokens 3584 --update-freq 16 \ | |
--max-update 30000 \ | |
--save-dir $CHECKPOINT_DIR | |
# Note: the above command assumes 8 GPUs. Adjust `--update-freq` if you have a | |
# different number of GPUs. | |
``` | |
Average the last 10 checkpoints: | |
```bash | |
python scripts/average_checkpoints.py \ | |
--inputs $CHECKPOINT_DIR \ | |
--num-epoch-checkpoints 10 \ | |
--output $CHECKPOINT_DIR/checkpoint.avg10.pt | |
``` | |
Evaluate BLEU: | |
```bash | |
# tokenized BLEU on newstest2017: | |
bash examples/backtranslation/tokenized_bleu.sh \ | |
wmt17 \ | |
en-de \ | |
data-bin/wmt18_en_de \ | |
data-bin/wmt18_en_de/code \ | |
$CHECKPOINT_DIR/checkpoint.avg10.pt | |
# BLEU4 = 29.57, 60.9/35.4/22.9/15.5 (BP=1.000, ratio=1.014, syslen=63049, reflen=62152) | |
# compare to 29.46 in Table 1, which is also for tokenized BLEU | |
# generally it's better to report (detokenized) sacrebleu though: | |
bash examples/backtranslation/sacrebleu.sh \ | |
wmt17 \ | |
en-de \ | |
data-bin/wmt18_en_de \ | |
data-bin/wmt18_en_de/code \ | |
$CHECKPOINT_DIR/checkpoint.avg10.pt | |
# BLEU+case.mixed+lang.en-de+numrefs.1+smooth.exp+test.wmt17+tok.13a+version.1.4.3 = 29.0 60.6/34.7/22.4/14.9 (BP = 1.000 ratio = 1.013 hyp_len = 62099 ref_len = 61287) | |
``` | |
#### Step 2. Back-translate monolingual German data | |
Train a reverse model (German-English) to do the back-translation: | |
```bash | |
CHECKPOINT_DIR=checkpoints_de_en_parallel | |
fairseq-train --fp16 \ | |
data-bin/wmt18_en_de \ | |
--source-lang de --target-lang en \ | |
--arch transformer_wmt_en_de_big --share-all-embeddings \ | |
--dropout 0.3 --weight-decay 0.0 \ | |
--criterion label_smoothed_cross_entropy --label-smoothing 0.1 \ | |
--optimizer adam --adam-betas '(0.9, 0.98)' --clip-norm 0.0 \ | |
--lr 0.001 --lr-scheduler inverse_sqrt --warmup-updates 4000 \ | |
--max-tokens 3584 --update-freq 16 \ | |
--max-update 30000 \ | |
--save-dir $CHECKPOINT_DIR | |
# Note: the above command assumes 8 GPUs. Adjust `--update-freq` if you have a | |
# different number of GPUs. | |
``` | |
Let's evaluate the back-translation (BT) model to make sure it is well trained: | |
```bash | |
bash examples/backtranslation/sacrebleu.sh \ | |
wmt17 \ | |
de-en \ | |
data-bin/wmt18_en_de \ | |
data-bin/wmt18_en_de/code \ | |
$CHECKPOINT_DIR/checkpoint_best.py | |
# BLEU+case.mixed+lang.de-en+numrefs.1+smooth.exp+test.wmt17+tok.13a+version.1.4.3 = 34.9 66.9/41.8/28.5/19.9 (BP = 0.983 ratio = 0.984 hyp_len = 63342 ref_len = 64399) | |
# compare to the best system from WMT'17 which scored 35.1: http://matrix.statmt.org/matrix/systems_list/1868 | |
``` | |
Next prepare the monolingual data: | |
```bash | |
# Download and prepare the monolingual data | |
# By default the script samples 25M monolingual sentences, which after | |
# deduplication should be just over 24M sentences. These are split into 25 | |
# shards, each with 1M sentences (except for the last shard). | |
cd examples/backtranslation/ | |
bash prepare-de-monolingual.sh | |
cd ../.. | |
# Binarize each shard of the monolingual data | |
TEXT=examples/backtranslation/wmt18_de_mono | |
for SHARD in $(seq -f "%02g" 0 24); do \ | |
fairseq-preprocess \ | |
--only-source \ | |
--source-lang de --target-lang en \ | |
--joined-dictionary \ | |
--srcdict data-bin/wmt18_en_de/dict.de.txt \ | |
--testpref $TEXT/bpe.monolingual.dedup.${SHARD} \ | |
--destdir data-bin/wmt18_de_mono/shard${SHARD} \ | |
--workers 20; \ | |
cp data-bin/wmt18_en_de/dict.en.txt data-bin/wmt18_de_mono/shard${SHARD}/; \ | |
done | |
``` | |
Now we're ready to perform back-translation over the monolingual data. The | |
following command generates via sampling, but it's possible to use greedy | |
decoding (`--beam 1`), beam search (`--beam 5`), | |
top-k sampling (`--sampling --beam 1 --sampling-topk 10`), etc.: | |
```bash | |
mkdir backtranslation_output | |
for SHARD in $(seq -f "%02g" 0 24); do \ | |
fairseq-generate --fp16 \ | |
data-bin/wmt18_de_mono/shard${SHARD} \ | |
--path $CHECKPOINT_DIR/checkpoint_best.pt \ | |
--skip-invalid-size-inputs-valid-test \ | |
--max-tokens 4096 \ | |
--sampling --beam 1 \ | |
> backtranslation_output/sampling.shard${SHARD}.out; \ | |
done | |
``` | |
After BT, use the `extract_bt_data.py` script to re-combine the shards, extract | |
the back-translations and apply length ratio filters: | |
```bash | |
python examples/backtranslation/extract_bt_data.py \ | |
--minlen 1 --maxlen 250 --ratio 1.5 \ | |
--output backtranslation_output/bt_data --srclang en --tgtlang de \ | |
backtranslation_output/sampling.shard*.out | |
# Ensure lengths are the same: | |
# wc -l backtranslation_output/bt_data.{en,de} | |
# 21795614 backtranslation_output/bt_data.en | |
# 21795614 backtranslation_output/bt_data.de | |
# 43591228 total | |
``` | |
Binarize the filtered BT data and combine it with the parallel data: | |
```bash | |
TEXT=backtranslation_output | |
fairseq-preprocess \ | |
--source-lang en --target-lang de \ | |
--joined-dictionary \ | |
--srcdict data-bin/wmt18_en_de/dict.en.txt \ | |
--trainpref $TEXT/bt_data \ | |
--destdir data-bin/wmt18_en_de_bt \ | |
--workers 20 | |
# We want to train on the combined data, so we'll symlink the parallel + BT data | |
# in the wmt18_en_de_para_plus_bt directory. We link the parallel data as "train" | |
# and the BT data as "train1", so that fairseq will combine them automatically | |
# and so that we can use the `--upsample-primary` option to upsample the | |
# parallel data (if desired). | |
PARA_DATA=$(readlink -f data-bin/wmt18_en_de) | |
BT_DATA=$(readlink -f data-bin/wmt18_en_de_bt) | |
COMB_DATA=data-bin/wmt18_en_de_para_plus_bt | |
mkdir -p $COMB_DATA | |
for LANG in en de; do \ | |
ln -s ${PARA_DATA}/dict.$LANG.txt ${COMB_DATA}/dict.$LANG.txt; \ | |
for EXT in bin idx; do \ | |
ln -s ${PARA_DATA}/train.en-de.$LANG.$EXT ${COMB_DATA}/train.en-de.$LANG.$EXT; \ | |
ln -s ${BT_DATA}/train.en-de.$LANG.$EXT ${COMB_DATA}/train1.en-de.$LANG.$EXT; \ | |
ln -s ${PARA_DATA}/valid.en-de.$LANG.$EXT ${COMB_DATA}/valid.en-de.$LANG.$EXT; \ | |
ln -s ${PARA_DATA}/test.en-de.$LANG.$EXT ${COMB_DATA}/test.en-de.$LANG.$EXT; \ | |
done; \ | |
done | |
``` | |
#### 3. Train an English-German model over the combined parallel + BT data | |
Finally we can train a model over the parallel + BT data: | |
```bash | |
CHECKPOINT_DIR=checkpoints_en_de_parallel_plus_bt | |
fairseq-train --fp16 \ | |
data-bin/wmt18_en_de_para_plus_bt \ | |
--upsample-primary 16 \ | |
--source-lang en --target-lang de \ | |
--arch transformer_wmt_en_de_big --share-all-embeddings \ | |
--dropout 0.3 --weight-decay 0.0 \ | |
--criterion label_smoothed_cross_entropy --label-smoothing 0.1 \ | |
--optimizer adam --adam-betas '(0.9, 0.98)' --clip-norm 0.0 \ | |
--lr 0.0007 --lr-scheduler inverse_sqrt --warmup-updates 4000 \ | |
--max-tokens 3584 --update-freq 16 \ | |
--max-update 100000 \ | |
--save-dir $CHECKPOINT_DIR | |
# Note: the above command assumes 8 GPUs. Adjust `--update-freq` if you have a | |
# different number of GPUs. | |
``` | |
Average the last 10 checkpoints: | |
```bash | |
python scripts/average_checkpoints.py \ | |
--inputs $CHECKPOINT_DIR \ | |
--num-epoch-checkpoints 10 \ | |
--output $CHECKPOINT_DIR/checkpoint.avg10.pt | |
``` | |
Evaluate BLEU: | |
```bash | |
# tokenized BLEU on newstest2017: | |
bash examples/backtranslation/tokenized_bleu.sh \ | |
wmt17 \ | |
en-de \ | |
data-bin/wmt18_en_de \ | |
data-bin/wmt18_en_de/code \ | |
$CHECKPOINT_DIR/checkpoint.avg10.pt | |
# BLEU4 = 32.35, 64.4/38.9/26.2/18.3 (BP=0.977, ratio=0.977, syslen=60729, reflen=62152) | |
# compare to 32.35 in Table 1, which is also for tokenized BLEU | |
# generally it's better to report (detokenized) sacrebleu: | |
bash examples/backtranslation/sacrebleu.sh \ | |
wmt17 \ | |
en-de \ | |
data-bin/wmt18_en_de \ | |
data-bin/wmt18_en_de/code \ | |
$CHECKPOINT_DIR/checkpoint.avg10.pt | |
# BLEU+case.mixed+lang.en-de+numrefs.1+smooth.exp+test.wmt17+tok.13a+version.1.4.3 = 31.5 64.3/38.2/25.6/17.6 (BP = 0.971 ratio = 0.971 hyp_len = 59515 ref_len = 61287) | |
``` | |
## Citation | |
```bibtex | |
@inproceedings{edunov2018backtranslation, | |
title = {Understanding Back-Translation at Scale}, | |
author = {Edunov, Sergey and Ott, Myle and Auli, Michael and Grangier, David}, | |
booktitle = {Conference of the Association for Computational Linguistics (ACL)}, | |
year = 2018, | |
} | |
``` | |