Spaces:
Running
Running
# Fine-tuning BART on GLUE tasks | |
### 1) Download the data from GLUE website (https://gluebenchmark.com/tasks) using following commands: | |
```bash | |
wget https://gist.githubusercontent.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e/raw/17b8dd0d724281ed7c3b2aeeda662b92809aadd5/download_glue_data.py | |
python download_glue_data.py --data_dir glue_data --tasks all | |
``` | |
### 2) Preprocess GLUE task data (same as RoBERTa): | |
```bash | |
./examples/roberta/preprocess_GLUE_tasks.sh glue_data <glue_task_name> | |
``` | |
`glue_task_name` is one of the following: | |
`{ALL, QQP, MNLI, QNLI, MRPC, RTE, STS-B, SST-2, CoLA}` | |
Use `ALL` for preprocessing all the glue tasks. | |
### 3) Fine-tuning on GLUE task: | |
Example fine-tuning cmd for `RTE` task | |
```bash | |
TOTAL_NUM_UPDATES=2036 # 10 epochs through RTE for bsz 16 | |
WARMUP_UPDATES=61 # 6 percent of the number of updates | |
LR=1e-05 # Peak LR for polynomial LR scheduler. | |
NUM_CLASSES=2 | |
MAX_SENTENCES=16 # Batch size. | |
BART_PATH=/path/to/bart/model.pt | |
CUDA_VISIBLE_DEVICES=0,1 fairseq-train RTE-bin/ \ | |
--restore-file $BART_PATH \ | |
--batch-size $MAX_SENTENCES \ | |
--max-tokens 4400 \ | |
--task sentence_prediction \ | |
--add-prev-output-tokens \ | |
--layernorm-embedding \ | |
--share-all-embeddings \ | |
--share-decoder-input-output-embed \ | |
--reset-optimizer --reset-dataloader --reset-meters \ | |
--required-batch-size-multiple 1 \ | |
--init-token 0 \ | |
--arch bart_large \ | |
--criterion sentence_prediction \ | |
--num-classes $NUM_CLASSES \ | |
--dropout 0.1 --attention-dropout 0.1 \ | |
--weight-decay 0.01 --optimizer adam --adam-betas "(0.9, 0.98)" --adam-eps 1e-08 \ | |
--clip-norm 0.0 \ | |
--lr-scheduler polynomial_decay --lr $LR --total-num-update $TOTAL_NUM_UPDATES --warmup-updates $WARMUP_UPDATES \ | |
--fp16 --fp16-init-scale 4 --threshold-loss-scale 1 --fp16-scale-window 128 \ | |
--max-epoch 10 \ | |
--find-unused-parameters \ | |
--best-checkpoint-metric accuracy --maximize-best-checkpoint-metric; | |
``` | |
For each of the GLUE task, you will need to use following cmd-line arguments: | |
Model | MNLI | QNLI | QQP | RTE | SST-2 | MRPC | CoLA | STS-B | |
---|---|---|---|---|---|---|---|--- | |
`--num-classes` | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | |
`--lr` | 5e-6 | 1e-5 | 1e-5 | 1e-5 | 5e-6 | 2e-5 | 2e-5 | 2e-5 | |
`bsz` | 128 | 32 | 32 | 32 | 128 | 64 | 64 | 32 | |
`--total-num-update` | 30968 | 33112 | 113272 | 1018 | 5233 | 1148 | 1334 | 1799 | |
`--warmup-updates` | 1858 | 1986 | 6796 | 61 | 314 | 68 | 80 | 107 | |
For `STS-B` additionally add `--regression-target --best-checkpoint-metric loss` and remove `--maximize-best-checkpoint-metric`. | |
**Note:** | |
a) `--total-num-updates` is used by `--polynomial_decay` scheduler and is calculated for `--max-epoch=10` and `--batch-size=32/64/128` depending on the task. | |
b) Above cmd-args and hyperparams are tested on Nvidia `V100` GPU with `32gb` of memory for each task. Depending on the GPU memory resources available to you, you can use increase `--update-freq` and reduce `--batch-size`. | |
### Inference on GLUE task | |
After training the model as mentioned in previous step, you can perform inference with checkpoints in `checkpoints/` directory using following python code snippet: | |
```python | |
from fairseq.models.bart import BARTModel | |
bart = BARTModel.from_pretrained( | |
'checkpoints/', | |
checkpoint_file='checkpoint_best.pt', | |
data_name_or_path='RTE-bin' | |
) | |
label_fn = lambda label: bart.task.label_dictionary.string( | |
[label + bart.task.label_dictionary.nspecial] | |
) | |
ncorrect, nsamples = 0, 0 | |
bart.cuda() | |
bart.eval() | |
with open('glue_data/RTE/dev.tsv') as fin: | |
fin.readline() | |
for index, line in enumerate(fin): | |
tokens = line.strip().split('\t') | |
sent1, sent2, target = tokens[1], tokens[2], tokens[3] | |
tokens = bart.encode(sent1, sent2) | |
prediction = bart.predict('sentence_classification_head', tokens).argmax().item() | |
prediction_label = label_fn(prediction) | |
ncorrect += int(prediction_label == target) | |
nsamples += 1 | |
print('| Accuracy: ', float(ncorrect)/float(nsamples)) | |
``` | |