PolyFormer / fairseq /examples /bart /README.summarization.md
jiang
init commit
650c5f6
|
raw
history blame
3.73 kB
# Fine-tuning BART on CNN-Dailymail summarization task
### 1) Download the CNN and Daily Mail data and preprocess it into data files with non-tokenized cased samples.
Follow the instructions [here](https://github.com/abisee/cnn-dailymail) to download the original CNN and Daily Mail datasets. To preprocess the data, refer to the pointers in [this issue](https://github.com/pytorch/fairseq/issues/1391) or check out the code [here](https://github.com/artmatsak/cnn-dailymail).
Follow the instructions [here](https://github.com/EdinburghNLP/XSum) to download the original Extreme Summarization datasets, or check out the code [here](https://github.com/EdinburghNLP/XSum/tree/master/XSum-Dataset), Please keep the raw dataset and make sure no tokenization nor BPE on the dataset.
### 2) BPE preprocess:
```bash
wget -N 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/encoder.json'
wget -N 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/vocab.bpe'
wget -N 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/dict.txt'
TASK=cnn_dm
for SPLIT in train val
do
for LANG in source target
do
python -m examples.roberta.multiprocessing_bpe_encoder \
--encoder-json encoder.json \
--vocab-bpe vocab.bpe \
--inputs "$TASK/$SPLIT.$LANG" \
--outputs "$TASK/$SPLIT.bpe.$LANG" \
--workers 60 \
--keep-empty;
done
done
```
### 3) Binarize dataset:
```bash
fairseq-preprocess \
--source-lang "source" \
--target-lang "target" \
--trainpref "${TASK}/train.bpe" \
--validpref "${TASK}/val.bpe" \
--destdir "${TASK}-bin/" \
--workers 60 \
--srcdict dict.txt \
--tgtdict dict.txt;
```
### 4) Fine-tuning on CNN-DM summarization task:
Example fine-tuning CNN-DM
```bash
TOTAL_NUM_UPDATES=20000
WARMUP_UPDATES=500
LR=3e-05
MAX_TOKENS=2048
UPDATE_FREQ=4
BART_PATH=/path/to/bart/model.pt
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 fairseq-train cnn_dm-bin \
--restore-file $BART_PATH \
--max-tokens $MAX_TOKENS \
--task translation \
--source-lang source --target-lang target \
--truncate-source \
--layernorm-embedding \
--share-all-embeddings \
--share-decoder-input-output-embed \
--reset-optimizer --reset-dataloader --reset-meters \
--required-batch-size-multiple 1 \
--arch bart_large \
--criterion label_smoothed_cross_entropy \
--label-smoothing 0.1 \
--dropout 0.1 --attention-dropout 0.1 \
--weight-decay 0.01 --optimizer adam --adam-betas "(0.9, 0.999)" --adam-eps 1e-08 \
--clip-norm 0.1 \
--lr-scheduler polynomial_decay --lr $LR --total-num-update $TOTAL_NUM_UPDATES --warmup-updates $WARMUP_UPDATES \
--fp16 --update-freq $UPDATE_FREQ \
--skip-invalid-size-inputs-valid-test \
--find-unused-parameters;
```
Above is expected to run on `1` node with `8 32gb-V100`.
Expected training time is about `5 hours`. Training time can be reduced with distributed training on `4` nodes and `--update-freq 1`.
Use TOTAL_NUM_UPDATES=15000 UPDATE_FREQ=2 for Xsum task
### Inference for CNN-DM test data using above trained checkpoint.
After training the model as mentioned in previous step, you can perform inference with checkpoints in `checkpoints/` directory using `eval_cnn.py`, for example
```bash
cp data-bin/cnn_dm/dict.source.txt checkpoints/
python examples/bart/summarize.py \
--model-dir checkpoints \
--model-file checkpoint_best.pt \
--src cnn_dm/test.source \
--out cnn_dm/test.hypo
```
For XSUM, which uses beam=6, lenpen=1.0, max_len_b=60, min_len=10:
```bash
cp data-bin/cnn_dm/dict.source.txt checkpoints/
python examples/bart/summarize.py \
--model-dir checkpoints \
--model-file checkpoint_best.pt \
--src cnn_dm/test.source \
--out cnn_dm/test.hypo \
--xsum-kwargs
```