Spaces:
Running
Running
# Neural Machine Translation | |
This README contains instructions for [using pretrained translation models](#example-usage-torchhub) | |
as well as [training new models](#training-a-new-model). | |
## Pre-trained models | |
Model | Description | Dataset | Download | |
---|---|---|--- | |
`conv.wmt14.en-fr` | Convolutional <br> ([Gehring et al., 2017](https://arxiv.org/abs/1705.03122)) | [WMT14 English-French](http://statmt.org/wmt14/translation-task.html#Download) | model: <br> [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/models/wmt14.v2.en-fr.fconv-py.tar.bz2) <br> newstest2014: <br> [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/data/wmt14.v2.en-fr.newstest2014.tar.bz2) <br> newstest2012/2013: <br> [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/data/wmt14.v2.en-fr.ntst1213.tar.bz2) | |
`conv.wmt14.en-de` | Convolutional <br> ([Gehring et al., 2017](https://arxiv.org/abs/1705.03122)) | [WMT14 English-German](http://statmt.org/wmt14/translation-task.html#Download) | model: <br> [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/models/wmt14.en-de.fconv-py.tar.bz2) <br> newstest2014: <br> [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/data/wmt14.en-de.newstest2014.tar.bz2) | |
`conv.wmt17.en-de` | Convolutional <br> ([Gehring et al., 2017](https://arxiv.org/abs/1705.03122)) | [WMT17 English-German](http://statmt.org/wmt17/translation-task.html#Download) | model: <br> [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/models/wmt17.v2.en-de.fconv-py.tar.bz2) <br> newstest2014: <br> [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/data/wmt17.v2.en-de.newstest2014.tar.bz2) | |
`transformer.wmt14.en-fr` | Transformer <br> ([Ott et al., 2018](https://arxiv.org/abs/1806.00187)) | [WMT14 English-French](http://statmt.org/wmt14/translation-task.html#Download) | model: <br> [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/models/wmt14.en-fr.joined-dict.transformer.tar.bz2) <br> newstest2014: <br> [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/data/wmt14.en-fr.joined-dict.newstest2014.tar.bz2) | |
`transformer.wmt16.en-de` | Transformer <br> ([Ott et al., 2018](https://arxiv.org/abs/1806.00187)) | [WMT16 English-German](https://drive.google.com/uc?export=download&id=0B_bZck-ksdkpM25jRUN2X2UxMm8) | model: <br> [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/models/wmt16.en-de.joined-dict.transformer.tar.bz2) <br> newstest2014: <br> [download (.tar.bz2)](https://dl.fbaipublicfiles.com/fairseq/data/wmt16.en-de.joined-dict.newstest2014.tar.bz2) | |
`transformer.wmt18.en-de` | Transformer <br> ([Edunov et al., 2018](https://arxiv.org/abs/1808.09381)) <br> WMT'18 winner | [WMT'18 English-German](http://www.statmt.org/wmt18/translation-task.html) | model: <br> [download (.tar.gz)](https://dl.fbaipublicfiles.com/fairseq/models/wmt18.en-de.ensemble.tar.gz) <br> See NOTE in the archive | |
`transformer.wmt19.en-de` | Transformer <br> ([Ng et al., 2019](https://arxiv.org/abs/1907.06616)) <br> WMT'19 winner | [WMT'19 English-German](http://www.statmt.org/wmt19/translation-task.html) | model: <br> [download (.tar.gz)](https://dl.fbaipublicfiles.com/fairseq/models/wmt19.en-de.joined-dict.ensemble.tar.gz) | |
`transformer.wmt19.de-en` | Transformer <br> ([Ng et al., 2019](https://arxiv.org/abs/1907.06616)) <br> WMT'19 winner | [WMT'19 German-English](http://www.statmt.org/wmt19/translation-task.html) | model: <br> [download (.tar.gz)](https://dl.fbaipublicfiles.com/fairseq/models/wmt19.de-en.joined-dict.ensemble.tar.gz) | |
`transformer.wmt19.en-ru` | Transformer <br> ([Ng et al., 2019](https://arxiv.org/abs/1907.06616)) <br> WMT'19 winner | [WMT'19 English-Russian](http://www.statmt.org/wmt19/translation-task.html) | model: <br> [download (.tar.gz)](https://dl.fbaipublicfiles.com/fairseq/models/wmt19.en-ru.ensemble.tar.gz) | |
`transformer.wmt19.ru-en` | Transformer <br> ([Ng et al., 2019](https://arxiv.org/abs/1907.06616)) <br> WMT'19 winner | [WMT'19 Russian-English](http://www.statmt.org/wmt19/translation-task.html) | model: <br> [download (.tar.gz)](https://dl.fbaipublicfiles.com/fairseq/models/wmt19.ru-en.ensemble.tar.gz) | |
## Example usage (torch.hub) | |
We require a few additional Python dependencies for preprocessing: | |
```bash | |
pip install fastBPE sacremoses subword_nmt | |
``` | |
Interactive translation via PyTorch Hub: | |
```python | |
import torch | |
# List available models | |
torch.hub.list('pytorch/fairseq') # [..., 'transformer.wmt16.en-de', ... ] | |
# Load a transformer trained on WMT'16 En-De | |
# Note: WMT'19 models use fastBPE instead of subword_nmt, see instructions below | |
en2de = torch.hub.load('pytorch/fairseq', 'transformer.wmt16.en-de', | |
tokenizer='moses', bpe='subword_nmt') | |
en2de.eval() # disable dropout | |
# The underlying model is available under the *models* attribute | |
assert isinstance(en2de.models[0], fairseq.models.transformer.TransformerModel) | |
# Move model to GPU for faster translation | |
en2de.cuda() | |
# Translate a sentence | |
en2de.translate('Hello world!') | |
# 'Hallo Welt!' | |
# Batched translation | |
en2de.translate(['Hello world!', 'The cat sat on the mat.']) | |
# ['Hallo Welt!', 'Die Katze saß auf der Matte.'] | |
``` | |
Loading custom models: | |
```python | |
from fairseq.models.transformer import TransformerModel | |
zh2en = TransformerModel.from_pretrained( | |
'/path/to/checkpoints', | |
checkpoint_file='checkpoint_best.pt', | |
data_name_or_path='data-bin/wmt17_zh_en_full', | |
bpe='subword_nmt', | |
bpe_codes='data-bin/wmt17_zh_en_full/zh.code' | |
) | |
zh2en.translate('你好 世界') | |
# 'Hello World' | |
``` | |
If you are using a `transformer.wmt19` models, you will need to set the `bpe` | |
argument to `'fastbpe'` and (optionally) load the 4-model ensemble: | |
```python | |
en2de = torch.hub.load('pytorch/fairseq', 'transformer.wmt19.en-de', | |
checkpoint_file='model1.pt:model2.pt:model3.pt:model4.pt', | |
tokenizer='moses', bpe='fastbpe') | |
en2de.eval() # disable dropout | |
``` | |
## Example usage (CLI tools) | |
Generation with the binarized test sets can be run in batch mode as follows, e.g. for WMT 2014 English-French on a GTX-1080ti: | |
```bash | |
mkdir -p data-bin | |
curl https://dl.fbaipublicfiles.com/fairseq/models/wmt14.v2.en-fr.fconv-py.tar.bz2 | tar xvjf - -C data-bin | |
curl https://dl.fbaipublicfiles.com/fairseq/data/wmt14.v2.en-fr.newstest2014.tar.bz2 | tar xvjf - -C data-bin | |
fairseq-generate data-bin/wmt14.en-fr.newstest2014 \ | |
--path data-bin/wmt14.en-fr.fconv-py/model.pt \ | |
--beam 5 --batch-size 128 --remove-bpe | tee /tmp/gen.out | |
# ... | |
# | Translated 3003 sentences (96311 tokens) in 166.0s (580.04 tokens/s) | |
# | Generate test with beam=5: BLEU4 = 40.83, 67.5/46.9/34.4/25.5 (BP=1.000, ratio=1.006, syslen=83262, reflen=82787) | |
# Compute BLEU score | |
grep ^H /tmp/gen.out | cut -f3- > /tmp/gen.out.sys | |
grep ^T /tmp/gen.out | cut -f2- > /tmp/gen.out.ref | |
fairseq-score --sys /tmp/gen.out.sys --ref /tmp/gen.out.ref | |
# BLEU4 = 40.83, 67.5/46.9/34.4/25.5 (BP=1.000, ratio=1.006, syslen=83262, reflen=82787) | |
``` | |
## Training a new model | |
### IWSLT'14 German to English (Transformer) | |
The following instructions can be used to train a Transformer model on the [IWSLT'14 German to English dataset](http://workshop2014.iwslt.org/downloads/proceeding.pdf). | |
First download and preprocess the data: | |
```bash | |
# Download and prepare the data | |
cd examples/translation/ | |
bash prepare-iwslt14.sh | |
cd ../.. | |
# Preprocess/binarize the data | |
TEXT=examples/translation/iwslt14.tokenized.de-en | |
fairseq-preprocess --source-lang de --target-lang en \ | |
--trainpref $TEXT/train --validpref $TEXT/valid --testpref $TEXT/test \ | |
--destdir data-bin/iwslt14.tokenized.de-en \ | |
--workers 20 | |
``` | |
Next we'll train a Transformer translation model over this data: | |
```bash | |
CUDA_VISIBLE_DEVICES=0 fairseq-train \ | |
data-bin/iwslt14.tokenized.de-en \ | |
--arch transformer_iwslt_de_en --share-decoder-input-output-embed \ | |
--optimizer adam --adam-betas '(0.9, 0.98)' --clip-norm 0.0 \ | |
--lr 5e-4 --lr-scheduler inverse_sqrt --warmup-updates 4000 \ | |
--dropout 0.3 --weight-decay 0.0001 \ | |
--criterion label_smoothed_cross_entropy --label-smoothing 0.1 \ | |
--max-tokens 4096 \ | |
--eval-bleu \ | |
--eval-bleu-args '{"beam": 5, "max_len_a": 1.2, "max_len_b": 10}' \ | |
--eval-bleu-detok moses \ | |
--eval-bleu-remove-bpe \ | |
--eval-bleu-print-samples \ | |
--best-checkpoint-metric bleu --maximize-best-checkpoint-metric | |
``` | |
Finally we can evaluate our trained model: | |
```bash | |
fairseq-generate data-bin/iwslt14.tokenized.de-en \ | |
--path checkpoints/checkpoint_best.pt \ | |
--batch-size 128 --beam 5 --remove-bpe | |
``` | |
### WMT'14 English to German (Convolutional) | |
The following instructions can be used to train a Convolutional translation model on the WMT English to German dataset. | |
See the [Scaling NMT README](../scaling_nmt/README.md) for instructions to train a Transformer translation model on this data. | |
The WMT English to German dataset can be preprocessed using the `prepare-wmt14en2de.sh` script. | |
By default it will produce a dataset that was modeled after [Attention Is All You Need (Vaswani et al., 2017)](https://arxiv.org/abs/1706.03762), but with additional news-commentary-v12 data from WMT'17. | |
To use only data available in WMT'14 or to replicate results obtained in the original [Convolutional Sequence to Sequence Learning (Gehring et al., 2017)](https://arxiv.org/abs/1705.03122) paper, please use the `--icml17` option. | |
```bash | |
# Download and prepare the data | |
cd examples/translation/ | |
# WMT'17 data: | |
bash prepare-wmt14en2de.sh | |
# or to use WMT'14 data: | |
# bash prepare-wmt14en2de.sh --icml17 | |
cd ../.. | |
# Binarize the dataset | |
TEXT=examples/translation/wmt17_en_de | |
fairseq-preprocess \ | |
--source-lang en --target-lang de \ | |
--trainpref $TEXT/train --validpref $TEXT/valid --testpref $TEXT/test \ | |
--destdir data-bin/wmt17_en_de --thresholdtgt 0 --thresholdsrc 0 \ | |
--workers 20 | |
# Train the model | |
mkdir -p checkpoints/fconv_wmt_en_de | |
fairseq-train \ | |
data-bin/wmt17_en_de \ | |
--arch fconv_wmt_en_de \ | |
--dropout 0.2 \ | |
--criterion label_smoothed_cross_entropy --label-smoothing 0.1 \ | |
--optimizer nag --clip-norm 0.1 \ | |
--lr 0.5 --lr-scheduler fixed --force-anneal 50 \ | |
--max-tokens 4000 \ | |
--save-dir checkpoints/fconv_wmt_en_de | |
# Evaluate | |
fairseq-generate data-bin/wmt17_en_de \ | |
--path checkpoints/fconv_wmt_en_de/checkpoint_best.pt \ | |
--beam 5 --remove-bpe | |
``` | |
### WMT'14 English to French | |
```bash | |
# Download and prepare the data | |
cd examples/translation/ | |
bash prepare-wmt14en2fr.sh | |
cd ../.. | |
# Binarize the dataset | |
TEXT=examples/translation/wmt14_en_fr | |
fairseq-preprocess \ | |
--source-lang en --target-lang fr \ | |
--trainpref $TEXT/train --validpref $TEXT/valid --testpref $TEXT/test \ | |
--destdir data-bin/wmt14_en_fr --thresholdtgt 0 --thresholdsrc 0 \ | |
--workers 60 | |
# Train the model | |
mkdir -p checkpoints/fconv_wmt_en_fr | |
fairseq-train \ | |
data-bin/wmt14_en_fr \ | |
--arch fconv_wmt_en_fr \ | |
--dropout 0.1 \ | |
--criterion label_smoothed_cross_entropy --label-smoothing 0.1 \ | |
--optimizer nag --clip-norm 0.1 \ | |
--lr 0.5 --lr-scheduler fixed --force-anneal 50 \ | |
--max-tokens 3000 \ | |
--save-dir checkpoints/fconv_wmt_en_fr | |
# Evaluate | |
fairseq-generate \ | |
data-bin/fconv_wmt_en_fr \ | |
--path checkpoints/fconv_wmt_en_fr/checkpoint_best.pt \ | |
--beam 5 --remove-bpe | |
``` | |
## Multilingual Translation | |
We also support training multilingual translation models. In this example we'll | |
train a multilingual `{de,fr}-en` translation model using the IWSLT'17 datasets. | |
Note that we use slightly different preprocessing here than for the IWSLT'14 | |
En-De data above. In particular we learn a joint BPE code for all three | |
languages and use fairseq-interactive and sacrebleu for scoring the test set. | |
```bash | |
# First install sacrebleu and sentencepiece | |
pip install sacrebleu sentencepiece | |
# Then download and preprocess the data | |
cd examples/translation/ | |
bash prepare-iwslt17-multilingual.sh | |
cd ../.. | |
# Binarize the de-en dataset | |
TEXT=examples/translation/iwslt17.de_fr.en.bpe16k | |
fairseq-preprocess --source-lang de --target-lang en \ | |
--trainpref $TEXT/train.bpe.de-en \ | |
--validpref $TEXT/valid0.bpe.de-en,$TEXT/valid1.bpe.de-en,$TEXT/valid2.bpe.de-en,$TEXT/valid3.bpe.de-en,$TEXT/valid4.bpe.de-en,$TEXT/valid5.bpe.de-en \ | |
--destdir data-bin/iwslt17.de_fr.en.bpe16k \ | |
--workers 10 | |
# Binarize the fr-en dataset | |
# NOTE: it's important to reuse the en dictionary from the previous step | |
fairseq-preprocess --source-lang fr --target-lang en \ | |
--trainpref $TEXT/train.bpe.fr-en \ | |
--validpref $TEXT/valid0.bpe.fr-en,$TEXT/valid1.bpe.fr-en,$TEXT/valid2.bpe.fr-en,$TEXT/valid3.bpe.fr-en,$TEXT/valid4.bpe.fr-en,$TEXT/valid5.bpe.fr-en \ | |
--tgtdict data-bin/iwslt17.de_fr.en.bpe16k/dict.en.txt \ | |
--destdir data-bin/iwslt17.de_fr.en.bpe16k \ | |
--workers 10 | |
# Train a multilingual transformer model | |
# NOTE: the command below assumes 1 GPU, but accumulates gradients from | |
# 8 fwd/bwd passes to simulate training on 8 GPUs | |
mkdir -p checkpoints/multilingual_transformer | |
CUDA_VISIBLE_DEVICES=0 fairseq-train data-bin/iwslt17.de_fr.en.bpe16k/ \ | |
--max-epoch 50 \ | |
--ddp-backend=legacy_ddp \ | |
--task multilingual_translation --lang-pairs de-en,fr-en \ | |
--arch multilingual_transformer_iwslt_de_en \ | |
--share-decoders --share-decoder-input-output-embed \ | |
--optimizer adam --adam-betas '(0.9, 0.98)' \ | |
--lr 0.0005 --lr-scheduler inverse_sqrt \ | |
--warmup-updates 4000 --warmup-init-lr '1e-07' \ | |
--label-smoothing 0.1 --criterion label_smoothed_cross_entropy \ | |
--dropout 0.3 --weight-decay 0.0001 \ | |
--save-dir checkpoints/multilingual_transformer \ | |
--max-tokens 4000 \ | |
--update-freq 8 | |
# Generate and score the test set with sacrebleu | |
SRC=de | |
sacrebleu --test-set iwslt17 --language-pair ${SRC}-en --echo src \ | |
| python scripts/spm_encode.py --model examples/translation/iwslt17.de_fr.en.bpe16k/sentencepiece.bpe.model \ | |
> iwslt17.test.${SRC}-en.${SRC}.bpe | |
cat iwslt17.test.${SRC}-en.${SRC}.bpe \ | |
| fairseq-interactive data-bin/iwslt17.de_fr.en.bpe16k/ \ | |
--task multilingual_translation --lang-pairs de-en,fr-en \ | |
--source-lang ${SRC} --target-lang en \ | |
--path checkpoints/multilingual_transformer/checkpoint_best.pt \ | |
--buffer-size 2000 --batch-size 128 \ | |
--beam 5 --remove-bpe=sentencepiece \ | |
> iwslt17.test.${SRC}-en.en.sys | |
grep ^H iwslt17.test.${SRC}-en.en.sys | cut -f3 \ | |
| sacrebleu --test-set iwslt17 --language-pair ${SRC}-en | |
``` | |
##### Argument format during inference | |
During inference it is required to specify a single `--source-lang` and | |
`--target-lang`, which indicates the inference langauge direction. | |
`--lang-pairs`, `--encoder-langtok`, `--decoder-langtok` have to be set to | |
the same value as training. | |