File size: 10,111 Bytes
74e0921
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5063a1
74e0921
 
e5063a1
74e0921
 
 
 
 
 
 
 
 
 
e5063a1
74e0921
 
 
e5063a1
74e0921
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5063a1
74e0921
 
 
 
e5063a1
74e0921
 
e5063a1
74e0921
 
 
e5063a1
74e0921
 
 
 
 
 
 
 
 
 
df33aed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
210ca84
df33aed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74e0921
df33aed
74e0921
 
df33aed
74e0921
 
 
 
 
 
5e0acd8
 
 
 
74e0921
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import gradio as gr
import pandas as pd
import yfinance as yf
from datetime import timedelta,datetime
import pytz
import matplotlib.pyplot as plt
from PIL import Image
import numpy as np

nifty_list = ["ADANIENT","ADANIPORTS","APOLLOHOSP","ASIANPAINT","AXISBANK","BAJAJ-AUTO","BAJFINANCE","BAJAJFINSV","BPCL","BHARTIARTL","BRITANNIA","CIPLA","COALINDIA","DIVISLAB","DRREDDY","EICHERMOT","GRASIM","HCLTECH","HDFCBANK","HDFCLIFE","HEROMOTOCO","HINDALCO","HINDUNILVR","ICICIBANK","ITC","INDUSINDBK","INFY","JSWSTEEL","KOTAKBANK","LTIM","LT","M&M","MARUTI","NTPC","NESTLEIND","ONGC","POWERGRID","RELIANCE","SBILIFE","SBIN","SUNPHARMA","TCS","TATACONSUM","TATAMOTORS","TATASTEEL","TECHM","TITAN","UPL","ULTRACEMCO","WIPRO","%5ENSEI"]

class Stocks:
    def __init__(self, symbol):
        self.symbol = symbol
        self.data = self.fetch_data()

    def fetch_data(self):
        try:
            
            ticker_symbol = self.symbol if self.symbol[0] == '%' else f"{self.symbol}.ns"

            
            data = yf.Ticker(ticker_symbol).history(period="10y", auto_adjust=True)
            return data
        except Exception as e:
            print(f"Error fetching data for {self.symbol}: {e}")
            return None

    def currentdateavailability(self, curDate):
        if curDate in self.data.index:
            return curDate
        else:
            
            curDate_dt = datetime.strptime(curDate, "%Y-%m-%d")
            newcDate_dt = curDate_dt - timedelta(days=1)

            
            newcDate_str = newcDate_dt.strftime("%Y-%m-%d")
            return self.currentdateavailability(newcDate_str)

    def CurPrice(self, curDate=None):
        curDate = self.currentdateavailability(curDate)
        return self.data.loc[curDate, 'Close'] if curDate is not None else self.data.iloc[-1]['Close']

    def NDayRet(self, N, curDate):
        curDate = self.currentdateavailability(curDate)
        NDate = self.data.index[self.data.index.get_loc(curDate) - N]
        return self.data.loc[curDate, 'Close'] - self.data.loc[NDate, 'Close']

    def DailyRet(self, curDate):
        curDate = self.currentdateavailability(curDate)
        return self.data.loc[curDate, 'Close'] - self.data.loc[curDate, 'Open']


    def Last30daysPrice(self, curDate=None):
        if curDate is not None:
            curDate = self.currentdateavailability(curDate)
            curDate_index = self.data.index.get_loc(curDate)
            return self.data.iloc[curDate_index - 30:curDate_index]['Close'].values
        else:
            return self.data.iloc[-30:]['Close'].values


    # This below function returns last 30 calender days close prices i.e. 30 days including holidays so less than 30 days close values are returned. Above fuction gives last 30 trading day close prices.
    # def Last30daysPrice(self, curDate=None):
    #     curDate = self.currentdateavailability(curDate)

    #     if curDate is not None:
    
    #         curDate_dt = datetime.strptime(curDate, "%Y-%m-%d")
    #         days_ago_30 = curDate_dt - timedelta(days=30)
    #         thirty_days_ago_date = days_ago_30.strftime("%Y-%m-%d")

    
    #         thirty_days_ago_date = self.currentdateavailability(thirty_days_ago_date)

    
    #         curDate_index = self.data.index.get_loc(curDate)
    #         thirty_days_ago_index = self.data.index.get_loc(thirty_days_ago_date)

    
    #         return self.data.iloc[thirty_days_ago_index:curDate_index + 1]['Close'].values
    #     else:
    #         return self.data.iloc[-30:]['Close'].values


stocks_dict = {symbol: Stocks(symbol) for symbol in nifty_list}

nifty_stocks = {symbol: stocks_dict[symbol] for symbol in nifty_list[:-1]}

nifty50 = {"nifty50": stocks_dict[nifty_list[-1]]}
def dateoffset(input_date_str):
    
    input_date_dt = datetime.strptime(input_date_str, "%Y-%m-%d")

    
    new_date_dt = input_date_dt - timedelta(days=1)

    
    new_date_str = new_date_dt.strftime("%Y-%m-%d")

    return new_date_str


def setdates(startdate, enddate):
    while startdate not in nifty50["nifty50"].data.index:
        startdate = dateoffset(startdate)

    while enddate not in nifty50["nifty50"].data.index:
        enddate = dateoffset(enddate)

    return startdate, enddate


def organisedata(startdate, enddate):
    
    startdate, enddate = setdates(startdate, enddate)

    
    symbols = list(nifty_stocks.keys())

    
    common_index = nifty50["nifty50"].data.loc[startdate:enddate].index

    
    data_frame = pd.DataFrame(index=symbols, columns=common_index)

    
    for symbol, stock_object in nifty_stocks.items():
        stock_data = stock_object.data.loc[startdate:enddate, 'Close']
        data_frame.loc[symbol] = stock_data.reindex(common_index).values

    return data_frame

def previoustimeframedata(n, startdate):
    
    startdate_dt = pd.to_datetime(startdate)

    
    ndaysagodate = startdate_dt - timedelta(days=int(n))

    
    ndaysagodate_str = ndaysagodate.strftime("%Y-%m-%d")
    startdate_str = startdate_dt.strftime("%Y-%m-%d")

    
    return organisedata(ndaysagodate_str, startdate_str)

def portfoliooperations(equity,startdate,ndaywindow,portfolio):
    
    startdate_dt = pd.to_datetime(startdate)
    windowenddate = startdate_dt + timedelta(days=int(ndaywindow))
    windowenddate_str = windowenddate.strftime("%Y-%m-%d")

    startdate,windowenddate = setdates(startdate,windowenddate_str) 
    
    window_data = organisedata(startdate,windowenddate) 

    differences = window_data.iloc[:, -1] - window_data.iloc[:, 0]  

    next_portfolio = differences[differences > 0].index.tolist() 

    
    portfolio_sum = window_data.loc[portfolio, window_data.columns[0]].sum()

    
    multiplier = equity / portfolio_sum if portfolio_sum != 0 else 0


    portfolio_value = pd.DataFrame(index=window_data.columns, columns=['value'])

    for date in window_data.columns:
    
      portfolio_sum = window_data.loc[portfolio, date].sum()
    
      portfolio_value.loc[date, 'value'] = portfolio_sum * multiplier


    return next_portfolio,portfolio_value

def mainfunction (equity,startdate,enddate,ndaywindow):
    
    pastwindow = previoustimeframedata(n=ndaywindow,startdate=startdate) # No Errors untill here

    differences = pastwindow.iloc[:, -1] - pastwindow.iloc[:, 0]

    portfolio = differences[differences > 0].index.tolist() # No Errors untill here

    portfolio,portfolio_value = portfoliooperations(equity=equity,startdate=startdate,ndaywindow=ndaywindow,portfolio=portfolio)



    enddate_tz = datetime.strptime(enddate,"%Y-%m-%d").replace(tzinfo=pytz.timezone('Asia/Kolkata'))

    while portfolio_value.index[-1] < pd.to_datetime(enddate_tz) - timedelta(days=int(ndaywindow)):

      portfolio,new_portfolio_value = portfoliooperations(equity=equity,startdate=startdate,ndaywindow=ndaywindow,portfolio=portfolio)

      portfolio_value = pd.concat([portfolio_value, new_portfolio_value])

      startdate = (pd.to_datetime(startdate)+ timedelta(days=int(ndaywindow))).strftime("%Y-%m-%d")
      
      equity = portfolio_value.iloc[-1, 0]

    return portfolio_value

def calculate_cagr(series):
    total_return = (series.iloc[-1] / series.iloc[0]) - 1
    num_years = len(series) / 252  
    cagr = (1 + total_return) ** (1 / num_years) - 1
    return cagr * 100


def calculate_volatility(series):
    return series.pct_change().std() * np.sqrt(252) * 100


def calculate_sharpe_ratio(series, risk_free_rate=0):
    cagr = calculate_cagr(series)
    volatility = calculate_volatility(series)
    sharpe_ratio = (cagr - risk_free_rate) / volatility
    return sharpe_ratio


def final_function(equity,startdate,enddate,ndaywindow):

    equity = int(equity)
    ndaywindow = int(ndaywindow)

    portfolio_value = mainfunction(equity=equity,startdate=startdate,enddate=enddate,ndaywindow=ndaywindow)
    nifty_data = nifty50["nifty50"].data
    subset_data = nifty_data[startdate:enddate]
    initial_nifty = subset_data['Close'][0]
    nifty_dataseries = (equity/initial_nifty)*subset_data['Close']
    plt.figure(figsize=(10, 6))
    plt.plot(portfolio_value['value'], label='Strategy')
    plt.plot(nifty_dataseries, label='Nifty50 as Benchmark')
    plt.title('Benchmark vs Strategy')
    plt.xlabel('Date')
    plt.ylabel('Equity')
    plt.legend()


    image_path = "output_plot.png"
    plt.savefig(image_path)
    plt.close()


    image = Image.open(image_path)

    strategy_cagr = calculate_cagr(portfolio_value['value'])
    strategy_volatility = calculate_volatility(portfolio_value['value'])
    strategy_sharpe_ratio = calculate_sharpe_ratio(portfolio_value['value'])

    benchmark_cagr = calculate_cagr(nifty_dataseries)
    benchmark_volatility = calculate_volatility(nifty_dataseries)
    benchmark_sharpe_ratio = calculate_sharpe_ratio(nifty_dataseries)


    return image, strategy_cagr, strategy_volatility, strategy_sharpe_ratio, benchmark_cagr, benchmark_volatility, benchmark_sharpe_ratio
title = "Portfolio tracking Nifty50 Stocks"
description = """
This App Demo is made for an Assignment. This Demo takes Initial Equity, Start Date, End Date, Time Window as inputs. Due to COVID 19 causing the fall of almost all Stock Prices, some Dates might result in strategy falling to zero at March 2020. Hence please try other dates 
"""


iface = gr.Interface(
    fn=final_function,
    inputs=[
        gr.Textbox(label="Equity",placeholder="Enter Equity Number"),
        gr.Textbox(label="Start Date",placeholder="YYYY-MM-DD"),
        gr.Textbox(label="End Date",placeholder="YYYY-MM-DD"),
        gr.Textbox(label="N-day Window",placeholder="Enter Window in Days")
    ],
    outputs=[
        gr.Image(type="pil"),
        gr.Textbox(label="Strategy CAGR (%)"),
        gr.Textbox(label="Strategy Volatility (%)"),
        gr.Textbox(label="Strategy Sharpe Ratio"),
        gr.Textbox(label="Benchmark CAGR (%)"),
        gr.Textbox(label="Benchmark Volatility (%)"),
        gr.Textbox(label="Benchmark Sharpe Ratio")
    ],
    title=title,
    description=description,
    
)

if __name__ == "__main__":
    iface.launch()