Spaces:
Sleeping
Sleeping
File size: 10,111 Bytes
74e0921 e5063a1 74e0921 e5063a1 74e0921 e5063a1 74e0921 e5063a1 74e0921 e5063a1 74e0921 e5063a1 74e0921 e5063a1 74e0921 e5063a1 74e0921 df33aed 210ca84 df33aed 74e0921 df33aed 74e0921 df33aed 74e0921 5e0acd8 74e0921 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
import gradio as gr
import pandas as pd
import yfinance as yf
from datetime import timedelta,datetime
import pytz
import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
nifty_list = ["ADANIENT","ADANIPORTS","APOLLOHOSP","ASIANPAINT","AXISBANK","BAJAJ-AUTO","BAJFINANCE","BAJAJFINSV","BPCL","BHARTIARTL","BRITANNIA","CIPLA","COALINDIA","DIVISLAB","DRREDDY","EICHERMOT","GRASIM","HCLTECH","HDFCBANK","HDFCLIFE","HEROMOTOCO","HINDALCO","HINDUNILVR","ICICIBANK","ITC","INDUSINDBK","INFY","JSWSTEEL","KOTAKBANK","LTIM","LT","M&M","MARUTI","NTPC","NESTLEIND","ONGC","POWERGRID","RELIANCE","SBILIFE","SBIN","SUNPHARMA","TCS","TATACONSUM","TATAMOTORS","TATASTEEL","TECHM","TITAN","UPL","ULTRACEMCO","WIPRO","%5ENSEI"]
class Stocks:
def __init__(self, symbol):
self.symbol = symbol
self.data = self.fetch_data()
def fetch_data(self):
try:
ticker_symbol = self.symbol if self.symbol[0] == '%' else f"{self.symbol}.ns"
data = yf.Ticker(ticker_symbol).history(period="10y", auto_adjust=True)
return data
except Exception as e:
print(f"Error fetching data for {self.symbol}: {e}")
return None
def currentdateavailability(self, curDate):
if curDate in self.data.index:
return curDate
else:
curDate_dt = datetime.strptime(curDate, "%Y-%m-%d")
newcDate_dt = curDate_dt - timedelta(days=1)
newcDate_str = newcDate_dt.strftime("%Y-%m-%d")
return self.currentdateavailability(newcDate_str)
def CurPrice(self, curDate=None):
curDate = self.currentdateavailability(curDate)
return self.data.loc[curDate, 'Close'] if curDate is not None else self.data.iloc[-1]['Close']
def NDayRet(self, N, curDate):
curDate = self.currentdateavailability(curDate)
NDate = self.data.index[self.data.index.get_loc(curDate) - N]
return self.data.loc[curDate, 'Close'] - self.data.loc[NDate, 'Close']
def DailyRet(self, curDate):
curDate = self.currentdateavailability(curDate)
return self.data.loc[curDate, 'Close'] - self.data.loc[curDate, 'Open']
def Last30daysPrice(self, curDate=None):
if curDate is not None:
curDate = self.currentdateavailability(curDate)
curDate_index = self.data.index.get_loc(curDate)
return self.data.iloc[curDate_index - 30:curDate_index]['Close'].values
else:
return self.data.iloc[-30:]['Close'].values
# This below function returns last 30 calender days close prices i.e. 30 days including holidays so less than 30 days close values are returned. Above fuction gives last 30 trading day close prices.
# def Last30daysPrice(self, curDate=None):
# curDate = self.currentdateavailability(curDate)
# if curDate is not None:
# curDate_dt = datetime.strptime(curDate, "%Y-%m-%d")
# days_ago_30 = curDate_dt - timedelta(days=30)
# thirty_days_ago_date = days_ago_30.strftime("%Y-%m-%d")
# thirty_days_ago_date = self.currentdateavailability(thirty_days_ago_date)
# curDate_index = self.data.index.get_loc(curDate)
# thirty_days_ago_index = self.data.index.get_loc(thirty_days_ago_date)
# return self.data.iloc[thirty_days_ago_index:curDate_index + 1]['Close'].values
# else:
# return self.data.iloc[-30:]['Close'].values
stocks_dict = {symbol: Stocks(symbol) for symbol in nifty_list}
nifty_stocks = {symbol: stocks_dict[symbol] for symbol in nifty_list[:-1]}
nifty50 = {"nifty50": stocks_dict[nifty_list[-1]]}
def dateoffset(input_date_str):
input_date_dt = datetime.strptime(input_date_str, "%Y-%m-%d")
new_date_dt = input_date_dt - timedelta(days=1)
new_date_str = new_date_dt.strftime("%Y-%m-%d")
return new_date_str
def setdates(startdate, enddate):
while startdate not in nifty50["nifty50"].data.index:
startdate = dateoffset(startdate)
while enddate not in nifty50["nifty50"].data.index:
enddate = dateoffset(enddate)
return startdate, enddate
def organisedata(startdate, enddate):
startdate, enddate = setdates(startdate, enddate)
symbols = list(nifty_stocks.keys())
common_index = nifty50["nifty50"].data.loc[startdate:enddate].index
data_frame = pd.DataFrame(index=symbols, columns=common_index)
for symbol, stock_object in nifty_stocks.items():
stock_data = stock_object.data.loc[startdate:enddate, 'Close']
data_frame.loc[symbol] = stock_data.reindex(common_index).values
return data_frame
def previoustimeframedata(n, startdate):
startdate_dt = pd.to_datetime(startdate)
ndaysagodate = startdate_dt - timedelta(days=int(n))
ndaysagodate_str = ndaysagodate.strftime("%Y-%m-%d")
startdate_str = startdate_dt.strftime("%Y-%m-%d")
return organisedata(ndaysagodate_str, startdate_str)
def portfoliooperations(equity,startdate,ndaywindow,portfolio):
startdate_dt = pd.to_datetime(startdate)
windowenddate = startdate_dt + timedelta(days=int(ndaywindow))
windowenddate_str = windowenddate.strftime("%Y-%m-%d")
startdate,windowenddate = setdates(startdate,windowenddate_str)
window_data = organisedata(startdate,windowenddate)
differences = window_data.iloc[:, -1] - window_data.iloc[:, 0]
next_portfolio = differences[differences > 0].index.tolist()
portfolio_sum = window_data.loc[portfolio, window_data.columns[0]].sum()
multiplier = equity / portfolio_sum if portfolio_sum != 0 else 0
portfolio_value = pd.DataFrame(index=window_data.columns, columns=['value'])
for date in window_data.columns:
portfolio_sum = window_data.loc[portfolio, date].sum()
portfolio_value.loc[date, 'value'] = portfolio_sum * multiplier
return next_portfolio,portfolio_value
def mainfunction (equity,startdate,enddate,ndaywindow):
pastwindow = previoustimeframedata(n=ndaywindow,startdate=startdate) # No Errors untill here
differences = pastwindow.iloc[:, -1] - pastwindow.iloc[:, 0]
portfolio = differences[differences > 0].index.tolist() # No Errors untill here
portfolio,portfolio_value = portfoliooperations(equity=equity,startdate=startdate,ndaywindow=ndaywindow,portfolio=portfolio)
enddate_tz = datetime.strptime(enddate,"%Y-%m-%d").replace(tzinfo=pytz.timezone('Asia/Kolkata'))
while portfolio_value.index[-1] < pd.to_datetime(enddate_tz) - timedelta(days=int(ndaywindow)):
portfolio,new_portfolio_value = portfoliooperations(equity=equity,startdate=startdate,ndaywindow=ndaywindow,portfolio=portfolio)
portfolio_value = pd.concat([portfolio_value, new_portfolio_value])
startdate = (pd.to_datetime(startdate)+ timedelta(days=int(ndaywindow))).strftime("%Y-%m-%d")
equity = portfolio_value.iloc[-1, 0]
return portfolio_value
def calculate_cagr(series):
total_return = (series.iloc[-1] / series.iloc[0]) - 1
num_years = len(series) / 252
cagr = (1 + total_return) ** (1 / num_years) - 1
return cagr * 100
def calculate_volatility(series):
return series.pct_change().std() * np.sqrt(252) * 100
def calculate_sharpe_ratio(series, risk_free_rate=0):
cagr = calculate_cagr(series)
volatility = calculate_volatility(series)
sharpe_ratio = (cagr - risk_free_rate) / volatility
return sharpe_ratio
def final_function(equity,startdate,enddate,ndaywindow):
equity = int(equity)
ndaywindow = int(ndaywindow)
portfolio_value = mainfunction(equity=equity,startdate=startdate,enddate=enddate,ndaywindow=ndaywindow)
nifty_data = nifty50["nifty50"].data
subset_data = nifty_data[startdate:enddate]
initial_nifty = subset_data['Close'][0]
nifty_dataseries = (equity/initial_nifty)*subset_data['Close']
plt.figure(figsize=(10, 6))
plt.plot(portfolio_value['value'], label='Strategy')
plt.plot(nifty_dataseries, label='Nifty50 as Benchmark')
plt.title('Benchmark vs Strategy')
plt.xlabel('Date')
plt.ylabel('Equity')
plt.legend()
image_path = "output_plot.png"
plt.savefig(image_path)
plt.close()
image = Image.open(image_path)
strategy_cagr = calculate_cagr(portfolio_value['value'])
strategy_volatility = calculate_volatility(portfolio_value['value'])
strategy_sharpe_ratio = calculate_sharpe_ratio(portfolio_value['value'])
benchmark_cagr = calculate_cagr(nifty_dataseries)
benchmark_volatility = calculate_volatility(nifty_dataseries)
benchmark_sharpe_ratio = calculate_sharpe_ratio(nifty_dataseries)
return image, strategy_cagr, strategy_volatility, strategy_sharpe_ratio, benchmark_cagr, benchmark_volatility, benchmark_sharpe_ratio
title = "Portfolio tracking Nifty50 Stocks"
description = """
This App Demo is made for an Assignment. This Demo takes Initial Equity, Start Date, End Date, Time Window as inputs. Due to COVID 19 causing the fall of almost all Stock Prices, some Dates might result in strategy falling to zero at March 2020. Hence please try other dates
"""
iface = gr.Interface(
fn=final_function,
inputs=[
gr.Textbox(label="Equity",placeholder="Enter Equity Number"),
gr.Textbox(label="Start Date",placeholder="YYYY-MM-DD"),
gr.Textbox(label="End Date",placeholder="YYYY-MM-DD"),
gr.Textbox(label="N-day Window",placeholder="Enter Window in Days")
],
outputs=[
gr.Image(type="pil"),
gr.Textbox(label="Strategy CAGR (%)"),
gr.Textbox(label="Strategy Volatility (%)"),
gr.Textbox(label="Strategy Sharpe Ratio"),
gr.Textbox(label="Benchmark CAGR (%)"),
gr.Textbox(label="Benchmark Volatility (%)"),
gr.Textbox(label="Benchmark Sharpe Ratio")
],
title=title,
description=description,
)
if __name__ == "__main__":
iface.launch()
|