File size: 14,737 Bytes
f270024
 
 
 
 
 
 
 
 
 
3b01b0f
f270024
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
#!/usr/bin/env python
# coding: utf-8

# In[2]:


import time
import torch
import warnings
import numpy as np
import gradio as gr
import matplotlib.pyplot as plt

# Import Burgers' equation components
from data_burgers import exact_solution as exact_solution_burgers
from model_io_burgers import load_model
from model_v2 import Encoder, Decoder, Propagator_concat as Propagator, Model
from LSTM_model import AE_Encoder, AE_Decoder, AE_Model, PytorchLSTM

# Import Advection-Diffusion components
from data_adv_dif import exact_solution as exact_solution_adv_dif
from model_io_adv_dif import load_model as load_model_adv_dif
from model_adv_dif import Encoder as Encoder2D, Decoder as Decoder2D, Propagator_concat as Propagator2D, Model as Model2D

warnings.filterwarnings("ignore")

# ========== Burgers' Equation Setup ==========
def get_burgers_model(input_dim, latent_dim):
    encoder = Encoder(input_dim, latent_dim)
    decoder = Decoder(latent_dim, input_dim)
    propagator = Propagator(latent_dim)
    return Model(encoder, decoder, propagator)

flexi_prop_model = get_burgers_model(128, 2)
checkpoint = torch.load("../1d_viscous_burgers/FlexiPropagator_2025-02-01-10-28-34_3e9656b5_best.pt", map_location='cpu')
flexi_prop_model.load_state_dict(checkpoint['model_state_dict'])
flexi_prop_model.eval()

# AE LSTM models
ae_encoder = AE_Encoder(128)
ae_decoder = AE_Decoder(2, 128)
ae_model = AE_Model(ae_encoder, ae_decoder)
lstm_model = PytorchLSTM()

ae_encoder.load_state_dict(torch.load("../1d_viscous_burgers/LSTM_model/ae_encoder_weights.pth", map_location='cpu'))
ae_decoder.load_state_dict(torch.load("../1d_viscous_burgers/LSTM_model/ae_decoder_weights.pth", map_location='cpu'))
ae_model.load_state_dict(torch.load("../1d_viscous_burgers/LSTM_model/ae_model.pth", map_location='cpu'))
lstm_model.load_state_dict(torch.load("../1d_viscous_burgers/LSTM_model/lstm_weights.pth", map_location='cpu'))

# ========== Helper Functions Burgers ==========
def exacts_equals_timewindow(t_0, Re, time_window=40):
    dt = 2 / 500
    solutions = [exact_solution_burgers(Re, t) for t in (t_0 + np.arange(0, time_window) * dt)]
    solns = torch.tensor(solutions, dtype=torch.float32)[None, :, :]
    latents = ae_encoder(solns)
    re_normalized = Re / 1000
    re_repeated = torch.ones(1, time_window, 1) * re_normalized
    return torch.cat((latents, re_repeated), dim=2), latents, solns

# Precompute contour plots
z1_vals = np.linspace(-10, 0.5, 200)
z2_vals = np.linspace(5, 32, 200)
Z1, Z2 = np.meshgrid(z1_vals, z2_vals)
latent_grid = np.stack([Z1.ravel(), Z2.ravel()], axis=1)

# Convert to tensor for decoding
latent_tensors = torch.tensor(latent_grid, dtype=torch.float32)

# Decode latent vectors and compute properties
with torch.no_grad():
    decoded_signals = flexi_prop_model.decoder(latent_tensors)

sharpness = []
peak_positions = []
x_vals = np.linspace(0, 2, decoded_signals.shape[1])
dx = x_vals[1] - x_vals[0]

for signal in decoded_signals.numpy():
    grad_u = np.gradient(signal, dx)
    sharpness.append(np.max(np.abs(grad_u)))
    peak_positions.append(x_vals[np.argmax(signal)])

sharpness = np.array(sharpness).reshape(Z1.shape)
peak_positions = np.array(peak_positions).reshape(Z1.shape)

def plot_burgers_comparison(Re, tau, t_0):
    dt = 2.0 / 500.0
    t_final = t_0 + tau * dt
    x_exact = exact_solution_burgers(Re, t_final)
    
    tau_tensor, Re_tensor, xt = torch.tensor([tau]).float()[:, None], torch.tensor([Re]).float()[:, None], torch.tensor([exact_solution_burgers(Re, t_0)]).float()[:, None]

    with torch.no_grad():
        _, x_hat_tau, *_ = flexi_prop_model(xt, tau_tensor, Re_tensor)

    latent_for_lstm, *_ = exacts_equals_timewindow(t_0, Re)
    with torch.no_grad():
        for _ in range(40, tau):
            pred = lstm_model(latent_for_lstm)
            pred_with_re = torch.cat((pred, torch.tensor([[Re / 1000]], dtype=torch.float32)), dim=1)
            latent_for_lstm = torch.cat((latent_for_lstm[:, 1:, :], pred_with_re.unsqueeze(0)), dim=1)
        final_pred_high_dim = ae_decoder(pred.unsqueeze(0))

    fig, ax = plt.subplots(figsize=(9, 5))
    ax.plot(xt.squeeze(), '--', linewidth=3, alpha=0.5, color="C0")
    ax.plot(x_hat_tau.squeeze(), 'D', markersize=5, color="C2")
    ax.plot(final_pred_high_dim.squeeze().detach().numpy(), '^', markersize=5, color="C1")
    ax.plot(x_exact.squeeze(), linewidth=2, alpha=0.5, color="Black")
    ax.set_title(f"Comparison ($t_0$={t_0:.2f} β†’ $t_f$={t_final:.2f}), Ο„={tau}", fontsize=14)
    ax.legend(["Initial", "Flexi-Prop", "AE LSTM", "True"])
    return fig

def burgers_update(Re, tau, t0):
    fig1 = plot_burgers_comparison(Re, tau, t0)

    # Timing calculations
    start = time.time()
    _ = flexi_prop_model(torch.randn(1, 1, 128), torch.tensor([[tau]]), torch.tensor([[Re]]))
    flexi_time = time.time() - start

    start = time.time()
    latent_for_lstm, _, _ = exacts_equals_timewindow(t0, Re, 40)
    encode_time = time.time() - start

    start = time.time()
    with torch.no_grad():
        for _ in range(40, tau):
            pred = lstm_model(latent_for_lstm)
            pred_with_re = torch.cat((pred, torch.tensor([[Re / 1000]], dtype=torch.float32)), dim=1)
            latent_for_lstm = torch.cat((latent_for_lstm[:, 1:, :], pred_with_re.unsqueeze(0)), dim=1)
    recursion_time = time.time() - start

    start = time.time()
    final_pred_high_dim = ae_decoder(pred.unsqueeze(0))
    decode_time = time.time() - start

    ae_lstm_total_time = encode_time + recursion_time + decode_time
    time_ratio = ae_lstm_total_time / flexi_time

    # Time plot
    fig, ax = plt.subplots(figsize=(11, 6))
    ax.bar(["Flexi-Prop", "AE LSTM (Encode)", "AE LSTM (Recursion)", "AE LSTM (Decode)", "AE LSTM (Total)"],
           [flexi_time, encode_time, recursion_time, decode_time, ae_lstm_total_time], 
           color=["C0", "C1", "C2", "C3", "C4"])
    ax.set_ylabel("Time (s)", fontsize=14)
    ax.set_title("Computation Time Comparison", fontsize=14)
    ax.grid(alpha=0.3)

    # Latent space visualization
    latent_fig = plot_latent_interpretation(Re, tau, t0)

    return fig1, fig, time_ratio, latent_fig

def plot_latent_interpretation(Re, tau, t_0):
    tau_tensor = torch.tensor([tau]).float()[:, None]
    Re_tensor = torch.tensor([Re]).float()[:, None]
    x_t = exact_solution_burgers(Re, t_0)
    xt = torch.tensor([x_t]).float()[:, None]

    with torch.no_grad():
        _, _, _, _, z_tau = flexi_prop_model(xt, tau_tensor, Re_tensor)
    
    z_tau = z_tau.squeeze().numpy()

    fig, axes = plt.subplots(1, 2, figsize=(9, 3))

    # Sharpness Plot
    c1 = axes[0].pcolormesh(Z1, Z2, sharpness, cmap='plasma', shading='gouraud')
    axes[0].scatter(z_tau[0], z_tau[1], color='red', marker='o', s=50, label="Current State")
    axes[0].set_ylabel("$Z_2$", fontsize=14)
    axes[0].set_title("Sharpness Encoding", fontsize=14)
    fig.colorbar(c1, ax=axes[0])
    axes[0].legend()

    # Peak Position Plot
    c2 = axes[1].pcolormesh(Z1, Z2, peak_positions, cmap='viridis', shading='gouraud')
    axes[1].scatter(z_tau[0], z_tau[1], color='red', marker='o', s=50, label="Current State")
    axes[1].set_title("Peak position Encoding", fontsize=14)
    fig.colorbar(c2, ax=axes[1], label="Peak Position")
    
    # Remove redundant y-axis labels on the second plot for better aesthetics
    axes[1].set_yticklabels([])

    # Set a single x-axis label centered below both plots
    fig.supxlabel("$Z_1$", fontsize=14)

    return fig

# ========== Advection-Diffusion Setup ==========
def get_adv_dif_model(latent_dim, output_dim):
    encoder = Encoder2D(latent_dim)
    decoder = Decoder2D(latent_dim)
    propagator = Propagator2D(latent_dim)
    return Model2D(encoder, decoder, propagator)

adv_dif_model = get_adv_dif_model(3, 128)
adv_dif_model, _, _, _ = load_model_adv_dif(
    "../2D_adv_dif/FlexiPropagator_2D_2025-01-30-12-11-01_0aee8fb0_best.pt", 
    adv_dif_model
)

def generate_3d_visualization(Re, t_0, tau):
    dt = 2 / 500
    t = t_0 + tau * dt

    U_initial = exact_solution_adv_dif(Re, t_0)
    U_evolved = exact_solution_adv_dif(Re, t)

    if np.isnan(U_initial).any() or np.isnan(U_evolved).any():
        return None

    fig3d = plt.figure(figsize=(12, 5))
    ax3d = fig3d.add_subplot(111, projection='3d')

    x_vals = np.linspace(-2, 2, U_initial.shape[1])
    y_vals = np.linspace(-2, 2, U_initial.shape[0])
    X, Y = np.meshgrid(x_vals, y_vals)

    surf1 = ax3d.plot_surface(X, Y, U_initial, cmap="viridis", alpha=0.6, label="Initial")
    surf2 = ax3d.plot_surface(X, Y, U_evolved, cmap="plasma", alpha=0.8, label="Evolved")

    ax3d.set_xlim(-3, 3)
    ax3d.set_xlabel("x")
    ax3d.set_ylabel("y")
    ax3d.set_zlabel("u(x,y,t)")
    ax3d.view_init(elev=25, azim=-45)
    ax3d.set_box_aspect((2,1,1))

    fig3d.colorbar(surf1, ax=ax3d, shrink=0.5, label="Initial")
    fig3d.colorbar(surf2, ax=ax3d, shrink=0.5, label="Evolved")
    ax3d.set_title(f"Solution Evolution\nInitial ($t_0$={t_0:.2f}) vs Evolved ($t_f$={t:.2f})")

    plt.tight_layout()
    plt.close(fig3d)
    return fig3d

def adv_dif_comparison(Re, t_0, tau):
    dt = 2 / 500
    exact_initial = exact_solution_adv_dif(Re, t_0)
    exact_final = exact_solution_adv_dif(Re, t_0 + tau * dt)

    if np.isnan(exact_initial).any() or np.isnan(exact_final).any():
        return None

    x_in = torch.tensor(exact_initial, dtype=torch.float32)[None, None, :, :]
    Re_in = torch.tensor([[Re]], dtype=torch.float32)
    tau_in = torch.tensor([[tau]], dtype=torch.float32)

    with torch.no_grad():
        x_hat, x_hat_tau, *_ = adv_dif_model(x_in, tau_in, Re_in)

    pred = x_hat_tau.squeeze().numpy()
    if pred.shape != exact_final.shape:
        return None

    mse = np.square(pred - exact_final)

    fig, axs = plt.subplots(1, 3, figsize=(15, 4))

    for ax, (data, title) in zip(axs, [(pred, "Model Prediction"),
                                       (exact_final, "Exact Solution"),
                                       (mse, "MSE Error")]):
        if title == "MSE Error":
            im = ax.imshow(data, cmap="viridis", vmin=0, vmax=1e-2)
            plt.colorbar(im, ax=ax, fraction=0.075)
        else:
            im = ax.imshow(data, cmap="jet")

        ax.set_title(title)
        ax.axis("off")

    plt.tight_layout()
    plt.close(fig)
    return fig

def update_initial_plot(Re, t_0):
    exact_initial = exact_solution_adv_dif(Re, t_0)
    fig, ax = plt.subplots(figsize=(5, 5))
    im = ax.imshow(exact_initial, cmap='jet')
    plt.colorbar(im, ax=ax)
    ax.set_title('Initial State')
    return fig

# ========== Gradio Interface ==========
with gr.Blocks(title="Flexi-Propagator: PDE Prediction Suite") as app:
    gr.Markdown("# Flexi-Propagator: Unified PDE Prediction Interface")

    with gr.Tabs():
        # 1D Burgers' Equation Tab
        with gr.Tab("1D Burgers' Equation"):
            gr.Markdown(r"""
                    ## πŸš€ Flexi-Propagator: Single-Shot Prediction for Nonlinear PDEs
                    **Governing Equation (1D Burgers' Equation):**
                    $$
                    \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2}
                    $$
                    **Key Advantages:**  
                    βœ”οΈ **60-150Γ— faster** than AE-LSTM baselines  
                    βœ”οΈ **Parametric control**: Embeds system parameters in latent space  
                    
                    **Physically Interpretable Latent Space - Disentanglement:**  
                    <div align="left">
                    $$
                    Z_1 \text{ Encodes Peak Location, } Z_2 \text{ Predominantly Encodes Re (Sharpness)}
                    $$
                    </div>

                """)
            
            with gr.Row():
                with gr.Column():
                    re_burgers = gr.Slider(425, 2350, 1040, label="Reynolds Number")
                    tau_burgers = gr.Slider(150, 450, 315, label="Time Steps (Ο„)")
                    t0_burgers = gr.Number(0.4, label="Initial Time")
                    latent_plot = gr.Plot(label="Latent Space Dynamics")
                with gr.Column():
                    burgers_plot = gr.Plot()
                    time_plot = gr.Plot()
                    ratio_out = gr.Number(label="Time Ratio (Flexi Prop/AE LSTM)")
            
            # with gr.Row():
            #     latent_plot = gr.Plot(label="Latent Space Dynamics")

            re_burgers.change(burgers_update, [re_burgers, tau_burgers, t0_burgers], 
                            [burgers_plot, time_plot, ratio_out, latent_plot])
            tau_burgers.change(burgers_update, [re_burgers, tau_burgers, t0_burgers], 
                            [burgers_plot, time_plot, ratio_out, latent_plot])
            t0_burgers.change(burgers_update, [re_burgers, tau_burgers, t0_burgers], 
                            [burgers_plot, time_plot, ratio_out, latent_plot])

        # 2D Advection-Diffusion Tab
        with gr.Tab("2D Advection-Diffusion"):
            gr.Markdown(r"""
                ## πŸŒͺ️ 2D Advection-Diffusion Visualization
                **Governing Equation:**
                $$
                \frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = \nu \left( \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)
                $$
                """)
            
            with gr.Row():
                with gr.Column(scale=1):
                    re_adv = gr.Slider(1, 10, 9, label="Reynolds Number (Re)")
                    t0_adv = gr.Number(0.45, label="Initial Time")
                    tau_adv = gr.Slider(150, 425, 225, label="Tau (Ο„)")
                    initial_plot_adv = gr.Plot(label="Initial State")
                
                with gr.Column(scale=3):
                    with gr.Row():
                        three_d_plot_adv = gr.Plot(label="3D Evolution")
                    with gr.Row():
                        comparison_plots_adv = gr.Plot(label="Model Comparison")

            def adv_update(Re, t0, tau):
                return (
                    generate_3d_visualization(Re, t0, tau),
                    adv_dif_comparison(Re, t0, tau),
                    update_initial_plot(Re, t0)
                )

            for component in [re_adv, t0_adv, tau_adv]:
                component.change(adv_update, [re_adv, t0_adv, tau_adv], 
                               [three_d_plot_adv, comparison_plots_adv, initial_plot_adv])

            app.load(lambda: adv_update(8, 0.35, 225), 
                   outputs=[three_d_plot_adv, comparison_plots_adv, initial_plot_adv])

app.launch()


# In[ ]: