Khalid Rafiq
Convert app.ipynb to app.py for faster execution
f270024
raw
history blame
14.7 kB
#!/usr/bin/env python
# coding: utf-8
# In[2]:
import time
import torch
import warnings
import numpy as np
import gradio as gr
import matplotlib.pyplot as plt
# Import Burgers' equation components
from data_burgers import exact_solution as exact_solution_burgers
from model_io_burgers import load_model
from model_v2 import Encoder, Decoder, Propagator_concat as Propagator, Model
from LSTM_model import AE_Encoder, AE_Decoder, AE_Model, PytorchLSTM
# Import Advection-Diffusion components
from data_adv_dif import exact_solution as exact_solution_adv_dif
from model_io_adv_dif import load_model as load_model_adv_dif
from model_adv_dif import Encoder as Encoder2D, Decoder as Decoder2D, Propagator_concat as Propagator2D, Model as Model2D
warnings.filterwarnings("ignore")
# ========== Burgers' Equation Setup ==========
def get_burgers_model(input_dim, latent_dim):
encoder = Encoder(input_dim, latent_dim)
decoder = Decoder(latent_dim, input_dim)
propagator = Propagator(latent_dim)
return Model(encoder, decoder, propagator)
flexi_prop_model = get_burgers_model(128, 2)
checkpoint = torch.load("../1d_viscous_burgers/FlexiPropagator_2025-02-01-10-28-34_3e9656b5_best.pt", map_location='cpu')
flexi_prop_model.load_state_dict(checkpoint['model_state_dict'])
flexi_prop_model.eval()
# AE LSTM models
ae_encoder = AE_Encoder(128)
ae_decoder = AE_Decoder(2, 128)
ae_model = AE_Model(ae_encoder, ae_decoder)
lstm_model = PytorchLSTM()
ae_encoder.load_state_dict(torch.load("../1d_viscous_burgers/LSTM_model/ae_encoder_weights.pth", map_location='cpu'))
ae_decoder.load_state_dict(torch.load("../1d_viscous_burgers/LSTM_model/ae_decoder_weights.pth", map_location='cpu'))
ae_model.load_state_dict(torch.load("../1d_viscous_burgers/LSTM_model/ae_model.pth", map_location='cpu'))
lstm_model.load_state_dict(torch.load("../1d_viscous_burgers/LSTM_model/lstm_weights.pth", map_location='cpu'))
# ========== Helper Functions Burgers ==========
def exacts_equals_timewindow(t_0, Re, time_window=40):
dt = 2 / 500
solutions = [exact_solution_burgers(Re, t) for t in (t_0 + np.arange(0, time_window) * dt)]
solns = torch.tensor(solutions, dtype=torch.float32)[None, :, :]
latents = ae_encoder(solns)
re_normalized = Re / 1000
re_repeated = torch.ones(1, time_window, 1) * re_normalized
return torch.cat((latents, re_repeated), dim=2), latents, solns
# Precompute contour plots
z1_vals = np.linspace(-10, 0.5, 200)
z2_vals = np.linspace(5, 32, 200)
Z1, Z2 = np.meshgrid(z1_vals, z2_vals)
latent_grid = np.stack([Z1.ravel(), Z2.ravel()], axis=1)
# Convert to tensor for decoding
latent_tensors = torch.tensor(latent_grid, dtype=torch.float32)
# Decode latent vectors and compute properties
with torch.no_grad():
decoded_signals = flexi_prop_model.decoder(latent_tensors)
sharpness = []
peak_positions = []
x_vals = np.linspace(0, 2, decoded_signals.shape[1])
dx = x_vals[1] - x_vals[0]
for signal in decoded_signals.numpy():
grad_u = np.gradient(signal, dx)
sharpness.append(np.max(np.abs(grad_u)))
peak_positions.append(x_vals[np.argmax(signal)])
sharpness = np.array(sharpness).reshape(Z1.shape)
peak_positions = np.array(peak_positions).reshape(Z1.shape)
def plot_burgers_comparison(Re, tau, t_0):
dt = 2.0 / 500.0
t_final = t_0 + tau * dt
x_exact = exact_solution_burgers(Re, t_final)
tau_tensor, Re_tensor, xt = torch.tensor([tau]).float()[:, None], torch.tensor([Re]).float()[:, None], torch.tensor([exact_solution_burgers(Re, t_0)]).float()[:, None]
with torch.no_grad():
_, x_hat_tau, *_ = flexi_prop_model(xt, tau_tensor, Re_tensor)
latent_for_lstm, *_ = exacts_equals_timewindow(t_0, Re)
with torch.no_grad():
for _ in range(40, tau):
pred = lstm_model(latent_for_lstm)
pred_with_re = torch.cat((pred, torch.tensor([[Re / 1000]], dtype=torch.float32)), dim=1)
latent_for_lstm = torch.cat((latent_for_lstm[:, 1:, :], pred_with_re.unsqueeze(0)), dim=1)
final_pred_high_dim = ae_decoder(pred.unsqueeze(0))
fig, ax = plt.subplots(figsize=(9, 5))
ax.plot(xt.squeeze(), '--', linewidth=3, alpha=0.5, color="C0")
ax.plot(x_hat_tau.squeeze(), 'D', markersize=5, color="C2")
ax.plot(final_pred_high_dim.squeeze().detach().numpy(), '^', markersize=5, color="C1")
ax.plot(x_exact.squeeze(), linewidth=2, alpha=0.5, color="Black")
ax.set_title(f"Comparison ($t_0$={t_0:.2f} β†’ $t_f$={t_final:.2f}), Ο„={tau}", fontsize=14)
ax.legend(["Initial", "Flexi-Prop", "AE LSTM", "True"])
return fig
def burgers_update(Re, tau, t0):
fig1 = plot_burgers_comparison(Re, tau, t0)
# Timing calculations
start = time.time()
_ = flexi_prop_model(torch.randn(1, 1, 128), torch.tensor([[tau]]), torch.tensor([[Re]]))
flexi_time = time.time() - start
start = time.time()
latent_for_lstm, _, _ = exacts_equals_timewindow(t0, Re, 40)
encode_time = time.time() - start
start = time.time()
with torch.no_grad():
for _ in range(40, tau):
pred = lstm_model(latent_for_lstm)
pred_with_re = torch.cat((pred, torch.tensor([[Re / 1000]], dtype=torch.float32)), dim=1)
latent_for_lstm = torch.cat((latent_for_lstm[:, 1:, :], pred_with_re.unsqueeze(0)), dim=1)
recursion_time = time.time() - start
start = time.time()
final_pred_high_dim = ae_decoder(pred.unsqueeze(0))
decode_time = time.time() - start
ae_lstm_total_time = encode_time + recursion_time + decode_time
time_ratio = ae_lstm_total_time / flexi_time
# Time plot
fig, ax = plt.subplots(figsize=(11, 6))
ax.bar(["Flexi-Prop", "AE LSTM (Encode)", "AE LSTM (Recursion)", "AE LSTM (Decode)", "AE LSTM (Total)"],
[flexi_time, encode_time, recursion_time, decode_time, ae_lstm_total_time],
color=["C0", "C1", "C2", "C3", "C4"])
ax.set_ylabel("Time (s)", fontsize=14)
ax.set_title("Computation Time Comparison", fontsize=14)
ax.grid(alpha=0.3)
# Latent space visualization
latent_fig = plot_latent_interpretation(Re, tau, t0)
return fig1, fig, time_ratio, latent_fig
def plot_latent_interpretation(Re, tau, t_0):
tau_tensor = torch.tensor([tau]).float()[:, None]
Re_tensor = torch.tensor([Re]).float()[:, None]
x_t = exact_solution_burgers(Re, t_0)
xt = torch.tensor([x_t]).float()[:, None]
with torch.no_grad():
_, _, _, _, z_tau = flexi_prop_model(xt, tau_tensor, Re_tensor)
z_tau = z_tau.squeeze().numpy()
fig, axes = plt.subplots(1, 2, figsize=(9, 3))
# Sharpness Plot
c1 = axes[0].pcolormesh(Z1, Z2, sharpness, cmap='plasma', shading='gouraud')
axes[0].scatter(z_tau[0], z_tau[1], color='red', marker='o', s=50, label="Current State")
axes[0].set_ylabel("$Z_2$", fontsize=14)
axes[0].set_title("Sharpness Encoding", fontsize=14)
fig.colorbar(c1, ax=axes[0])
axes[0].legend()
# Peak Position Plot
c2 = axes[1].pcolormesh(Z1, Z2, peak_positions, cmap='viridis', shading='gouraud')
axes[1].scatter(z_tau[0], z_tau[1], color='red', marker='o', s=50, label="Current State")
axes[1].set_title("Peak position Encoding", fontsize=14)
fig.colorbar(c2, ax=axes[1], label="Peak Position")
# Remove redundant y-axis labels on the second plot for better aesthetics
axes[1].set_yticklabels([])
# Set a single x-axis label centered below both plots
fig.supxlabel("$Z_1$", fontsize=14)
return fig
# ========== Advection-Diffusion Setup ==========
def get_adv_dif_model(latent_dim, output_dim):
encoder = Encoder2D(latent_dim)
decoder = Decoder2D(latent_dim)
propagator = Propagator2D(latent_dim)
return Model2D(encoder, decoder, propagator)
adv_dif_model = get_adv_dif_model(3, 128)
adv_dif_model, _, _, _ = load_model_adv_dif(
"../2D_adv_dif/FlexiPropagator_2D_2025-01-30-12-11-01_0aee8fb0_best.pt",
adv_dif_model
)
def generate_3d_visualization(Re, t_0, tau):
dt = 2 / 500
t = t_0 + tau * dt
U_initial = exact_solution_adv_dif(Re, t_0)
U_evolved = exact_solution_adv_dif(Re, t)
if np.isnan(U_initial).any() or np.isnan(U_evolved).any():
return None
fig3d = plt.figure(figsize=(12, 5))
ax3d = fig3d.add_subplot(111, projection='3d')
x_vals = np.linspace(-2, 2, U_initial.shape[1])
y_vals = np.linspace(-2, 2, U_initial.shape[0])
X, Y = np.meshgrid(x_vals, y_vals)
surf1 = ax3d.plot_surface(X, Y, U_initial, cmap="viridis", alpha=0.6, label="Initial")
surf2 = ax3d.plot_surface(X, Y, U_evolved, cmap="plasma", alpha=0.8, label="Evolved")
ax3d.set_xlim(-3, 3)
ax3d.set_xlabel("x")
ax3d.set_ylabel("y")
ax3d.set_zlabel("u(x,y,t)")
ax3d.view_init(elev=25, azim=-45)
ax3d.set_box_aspect((2,1,1))
fig3d.colorbar(surf1, ax=ax3d, shrink=0.5, label="Initial")
fig3d.colorbar(surf2, ax=ax3d, shrink=0.5, label="Evolved")
ax3d.set_title(f"Solution Evolution\nInitial ($t_0$={t_0:.2f}) vs Evolved ($t_f$={t:.2f})")
plt.tight_layout()
plt.close(fig3d)
return fig3d
def adv_dif_comparison(Re, t_0, tau):
dt = 2 / 500
exact_initial = exact_solution_adv_dif(Re, t_0)
exact_final = exact_solution_adv_dif(Re, t_0 + tau * dt)
if np.isnan(exact_initial).any() or np.isnan(exact_final).any():
return None
x_in = torch.tensor(exact_initial, dtype=torch.float32)[None, None, :, :]
Re_in = torch.tensor([[Re]], dtype=torch.float32)
tau_in = torch.tensor([[tau]], dtype=torch.float32)
with torch.no_grad():
x_hat, x_hat_tau, *_ = adv_dif_model(x_in, tau_in, Re_in)
pred = x_hat_tau.squeeze().numpy()
if pred.shape != exact_final.shape:
return None
mse = np.square(pred - exact_final)
fig, axs = plt.subplots(1, 3, figsize=(15, 4))
for ax, (data, title) in zip(axs, [(pred, "Model Prediction"),
(exact_final, "Exact Solution"),
(mse, "MSE Error")]):
if title == "MSE Error":
im = ax.imshow(data, cmap="viridis", vmin=0, vmax=1e-2)
plt.colorbar(im, ax=ax, fraction=0.075)
else:
im = ax.imshow(data, cmap="jet")
ax.set_title(title)
ax.axis("off")
plt.tight_layout()
plt.close(fig)
return fig
def update_initial_plot(Re, t_0):
exact_initial = exact_solution_adv_dif(Re, t_0)
fig, ax = plt.subplots(figsize=(5, 5))
im = ax.imshow(exact_initial, cmap='jet')
plt.colorbar(im, ax=ax)
ax.set_title('Initial State')
return fig
# ========== Gradio Interface ==========
with gr.Blocks(title="Flexi-Propagator: PDE Prediction Suite") as app:
gr.Markdown("# Flexi-Propagator: Unified PDE Prediction Interface")
with gr.Tabs():
# 1D Burgers' Equation Tab
with gr.Tab("1D Burgers' Equation"):
gr.Markdown(r"""
## πŸš€ Flexi-Propagator: Single-Shot Prediction for Nonlinear PDEs
**Governing Equation (1D Burgers' Equation):**
$$
\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2}
$$
**Key Advantages:**
βœ”οΈ **60-150Γ— faster** than AE-LSTM baselines
βœ”οΈ **Parametric control**: Embeds system parameters in latent space
**Physically Interpretable Latent Space - Disentanglement:**
<div align="left">
$$
Z_1 \text{ Encodes Peak Location, } Z_2 \text{ Predominantly Encodes Re (Sharpness)}
$$
</div>
""")
with gr.Row():
with gr.Column():
re_burgers = gr.Slider(425, 2350, 1040, label="Reynolds Number")
tau_burgers = gr.Slider(150, 450, 315, label="Time Steps (Ο„)")
t0_burgers = gr.Number(0.4, label="Initial Time")
latent_plot = gr.Plot(label="Latent Space Dynamics")
with gr.Column():
burgers_plot = gr.Plot()
time_plot = gr.Plot()
ratio_out = gr.Number(label="Time Ratio (Flexi Prop/AE LSTM)")
# with gr.Row():
# latent_plot = gr.Plot(label="Latent Space Dynamics")
re_burgers.change(burgers_update, [re_burgers, tau_burgers, t0_burgers],
[burgers_plot, time_plot, ratio_out, latent_plot])
tau_burgers.change(burgers_update, [re_burgers, tau_burgers, t0_burgers],
[burgers_plot, time_plot, ratio_out, latent_plot])
t0_burgers.change(burgers_update, [re_burgers, tau_burgers, t0_burgers],
[burgers_plot, time_plot, ratio_out, latent_plot])
# 2D Advection-Diffusion Tab
with gr.Tab("2D Advection-Diffusion"):
gr.Markdown(r"""
## πŸŒͺ️ 2D Advection-Diffusion Visualization
**Governing Equation:**
$$
\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = \nu \left( \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)
$$
""")
with gr.Row():
with gr.Column(scale=1):
re_adv = gr.Slider(1, 10, 9, label="Reynolds Number (Re)")
t0_adv = gr.Number(0.45, label="Initial Time")
tau_adv = gr.Slider(150, 425, 225, label="Tau (Ο„)")
initial_plot_adv = gr.Plot(label="Initial State")
with gr.Column(scale=3):
with gr.Row():
three_d_plot_adv = gr.Plot(label="3D Evolution")
with gr.Row():
comparison_plots_adv = gr.Plot(label="Model Comparison")
def adv_update(Re, t0, tau):
return (
generate_3d_visualization(Re, t0, tau),
adv_dif_comparison(Re, t0, tau),
update_initial_plot(Re, t0)
)
for component in [re_adv, t0_adv, tau_adv]:
component.change(adv_update, [re_adv, t0_adv, tau_adv],
[three_d_plot_adv, comparison_plots_adv, initial_plot_adv])
app.load(lambda: adv_update(8, 0.35, 225),
outputs=[three_d_plot_adv, comparison_plots_adv, initial_plot_adv])
app.launch()
# In[ ]: