Spaces:
Runtime error
Runtime error
import os | |
from typing import Tuple, List | |
import cv2 | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from loguru import logger | |
from pydantic import BaseModel | |
from lama_cleaner.helper import load_jit_model | |
class Click(BaseModel): | |
# [y, x] | |
coords: Tuple[float, float] | |
is_positive: bool | |
indx: int | |
def coords_and_indx(self): | |
return (*self.coords, self.indx) | |
def scale(self, x_ratio: float, y_ratio: float) -> 'Click': | |
return Click( | |
coords=(self.coords[0] * x_ratio, self.coords[1] * y_ratio), | |
is_positive=self.is_positive, | |
indx=self.indx | |
) | |
class ResizeTrans: | |
def __init__(self, size=480): | |
super().__init__() | |
self.crop_height = size | |
self.crop_width = size | |
def transform(self, image_nd, clicks_lists): | |
assert image_nd.shape[0] == 1 and len(clicks_lists) == 1 | |
image_height, image_width = image_nd.shape[2:4] | |
self.image_height = image_height | |
self.image_width = image_width | |
image_nd_r = F.interpolate(image_nd, (self.crop_height, self.crop_width), mode='bilinear', align_corners=True) | |
y_ratio = self.crop_height / image_height | |
x_ratio = self.crop_width / image_width | |
clicks_lists_resized = [] | |
for clicks_list in clicks_lists: | |
clicks_list_resized = [click.scale(y_ratio, x_ratio) for click in clicks_list] | |
clicks_lists_resized.append(clicks_list_resized) | |
return image_nd_r, clicks_lists_resized | |
def inv_transform(self, prob_map): | |
new_prob_map = F.interpolate(prob_map, (self.image_height, self.image_width), mode='bilinear', | |
align_corners=True) | |
return new_prob_map | |
class ISPredictor(object): | |
def __init__( | |
self, | |
model, | |
device, | |
open_kernel_size: int, | |
dilate_kernel_size: int, | |
net_clicks_limit=None, | |
zoom_in=None, | |
infer_size=384, | |
): | |
self.model = model | |
self.open_kernel_size = open_kernel_size | |
self.dilate_kernel_size = dilate_kernel_size | |
self.net_clicks_limit = net_clicks_limit | |
self.device = device | |
self.zoom_in = zoom_in | |
self.infer_size = infer_size | |
# self.transforms = [zoom_in] if zoom_in is not None else [] | |
def __call__(self, input_image: torch.Tensor, clicks: List[Click], prev_mask): | |
""" | |
Args: | |
input_image: [1, 3, H, W] [0~1] | |
clicks: List[Click] | |
prev_mask: [1, 1, H, W] | |
Returns: | |
""" | |
transforms = [ResizeTrans(self.infer_size)] | |
input_image = torch.cat((input_image, prev_mask), dim=1) | |
# image_nd resized to infer_size | |
for t in transforms: | |
image_nd, clicks_lists = t.transform(input_image, [clicks]) | |
# image_nd.shape = [1, 4, 256, 256] | |
# points_nd.sha[e = [1, 2, 3] | |
# clicks_lists[0][0] Click 类 | |
points_nd = self.get_points_nd(clicks_lists) | |
pred_logits = self.model(image_nd, points_nd) | |
pred = torch.sigmoid(pred_logits) | |
pred = self.post_process(pred) | |
prediction = F.interpolate(pred, mode='bilinear', align_corners=True, | |
size=image_nd.size()[2:]) | |
for t in reversed(transforms): | |
prediction = t.inv_transform(prediction) | |
# if self.zoom_in is not None and self.zoom_in.check_possible_recalculation(): | |
# return self.get_prediction(clicker) | |
return prediction.cpu().numpy()[0, 0] | |
def post_process(self, pred: torch.Tensor) -> torch.Tensor: | |
pred_mask = pred.cpu().numpy()[0][0] | |
# morph_open to remove small noise | |
kernel_size = self.open_kernel_size | |
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (kernel_size, kernel_size)) | |
pred_mask = cv2.morphologyEx(pred_mask, cv2.MORPH_OPEN, kernel, iterations=1) | |
# Why dilate: make region slightly larger to avoid missing some pixels, this generally works better | |
dilate_kernel_size = self.dilate_kernel_size | |
if dilate_kernel_size > 1: | |
kernel = cv2.getStructuringElement(cv2.MORPH_DILATE, (dilate_kernel_size, dilate_kernel_size)) | |
pred_mask = cv2.dilate(pred_mask, kernel, 1) | |
return torch.from_numpy(pred_mask).unsqueeze(0).unsqueeze(0) | |
def get_points_nd(self, clicks_lists): | |
total_clicks = [] | |
num_pos_clicks = [sum(x.is_positive for x in clicks_list) for clicks_list in clicks_lists] | |
num_neg_clicks = [len(clicks_list) - num_pos for clicks_list, num_pos in zip(clicks_lists, num_pos_clicks)] | |
num_max_points = max(num_pos_clicks + num_neg_clicks) | |
if self.net_clicks_limit is not None: | |
num_max_points = min(self.net_clicks_limit, num_max_points) | |
num_max_points = max(1, num_max_points) | |
for clicks_list in clicks_lists: | |
clicks_list = clicks_list[:self.net_clicks_limit] | |
pos_clicks = [click.coords_and_indx for click in clicks_list if click.is_positive] | |
pos_clicks = pos_clicks + (num_max_points - len(pos_clicks)) * [(-1, -1, -1)] | |
neg_clicks = [click.coords_and_indx for click in clicks_list if not click.is_positive] | |
neg_clicks = neg_clicks + (num_max_points - len(neg_clicks)) * [(-1, -1, -1)] | |
total_clicks.append(pos_clicks + neg_clicks) | |
return torch.tensor(total_clicks, device=self.device) | |
INTERACTIVE_SEG_MODEL_URL = os.environ.get( | |
"INTERACTIVE_SEG_MODEL_URL", | |
"https://github.com/Sanster/models/releases/download/clickseg_pplnet/clickseg_pplnet.pt", | |
) | |
class InteractiveSeg: | |
def __init__(self, infer_size=384, open_kernel_size=3, dilate_kernel_size=3): | |
device = torch.device('cpu') | |
model = load_jit_model(INTERACTIVE_SEG_MODEL_URL, device).eval() | |
self.predictor = ISPredictor(model, device, | |
infer_size=infer_size, | |
open_kernel_size=open_kernel_size, | |
dilate_kernel_size=dilate_kernel_size) | |
def __call__(self, image, clicks, prev_mask=None): | |
""" | |
Args: | |
image: [H,W,C] RGB | |
clicks: | |
Returns: | |
""" | |
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) | |
image = torch.from_numpy((image / 255).transpose(2, 0, 1)).unsqueeze(0).float() | |
if prev_mask is None: | |
mask = torch.zeros_like(image[:, :1, :, :]) | |
else: | |
logger.info('InteractiveSeg run with prev_mask') | |
mask = torch.from_numpy(prev_mask / 255).unsqueeze(0).unsqueeze(0).float() | |
pred_probs = self.predictor(image, clicks, mask) | |
pred_mask = pred_probs > 0.5 | |
pred_mask = (pred_mask * 255).astype(np.uint8) | |
# Find largest contour | |
# pred_mask = only_keep_largest_contour(pred_mask) | |
# To simplify frontend process, add mask brush color here | |
fg = pred_mask == 255 | |
bg = pred_mask != 255 | |
pred_mask = cv2.cvtColor(pred_mask, cv2.COLOR_GRAY2BGRA) | |
# frontend brush color "ffcc00bb" | |
pred_mask[bg] = 0 | |
pred_mask[fg] = [255, 203, 0, int(255 * 0.73)] | |
pred_mask = cv2.cvtColor(pred_mask, cv2.COLOR_BGRA2RGBA) | |
return pred_mask | |