kushinm's picture
Create app.py
17c016d
raw
history blame
2.93 kB
import gradio as gr
from transformers import pipeline
from transformers import BlipProcessor, BlipForConditionalGeneration
from transformers import CLIPProcessor, CLIPModel
import torch
from PIL import Image
import requests
import os
device = "cuda" if torch.cuda.is_available() else "cpu"
model_id = "openai/clip-vit-base-patch16" # You can choose a different CLIP model from Hugging Face
clipprocessor = CLIPProcessor.from_pretrained(model_id)
clipmodel = CLIPModel.from_pretrained(model_id).to(device)
model_id = "Salesforce/blip-image-captioning-base" ## load modelID for BLIP
blipmodel = BlipForConditionalGeneration.from_pretrained(model_id)
blipprocessor = BlipProcessor.from_pretrained(model_id)
def evaluate_caption(image, caption):
# # Pre-process image
# image = processor(images=image, return_tensors="pt").to(device)
# # Tokenize and encode the caption
# text = processor(text=caption, return_tensors="pt").to(device)
blip_input = blipprocessor(image, return_tensors="pt")
out = blipmodel.generate(**blip_input,max_new_tokens=50)
blip_caption = blipprocessor.decode(out[0], skip_special_tokens=True)
inputs = clipprocessor(text=[caption,blip_caption], images=image, return_tensors="pt", padding=True)
similarity_score = clipmodel(**inputs).logits_per_image
# Convert score to a float
score = similarity_score.softmax(dim=1).detach().numpy()
print(score)
if score[0][0]>score[0][1]:
winner = "The first caption is the human"
else:
winner = "The second caption is the human"
return blip_caption,winner
# ,gr.Image(type="pil", value="mukherjee_kushin_WIDPICS1.jpg")
callback = gr.HuggingFaceDatasetSaver('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', "gradioTest")
with gr.Blocks() as demo:
im_path_str = 'n01677366_12918.JPEG'
im_path = gr.Textbox(label="Image fname",value=im_path_str,interactive=False, visible=False)
# fn=evaluate_caption,
# inputs=["image", "text"]
with gr.Column():
im = gr.Image(label="Target Image", interactive = False, type="pil",value =f'images/{im_path_str}',height=500)
caps = gr.Textbox(label="Player 1 Caption")
submit_btn = gr.Button("Submit!!")
# outputs=["text","text"],
with gr.Column():
out1 = gr.Textbox(label="Player 2 (Machine) Caption",interactive=False)
out2 = gr.Textbox(label="Winner",interactive=False)
# live=False,
# interpretation="default"
callback.setup([caps, out1, out2, im_path], "flagged_data_points")
# callback.flag([image, caption, blip_caption, winner])
submit_btn.click(fn = evaluate_caption,inputs = [im,caps], outputs = [out1, out2],api_name="test").success(lambda *args: callback.flag(args), [caps, out1, out2, im_path], None, preprocess=False)
# with gr.Row():
# btn = gr.Button("Flag")
# btn.click(lambda *args: callback.flag(args), [im, caps, out1, out2], None, preprocess=False)
demo.launch(debug=False)