|
import torch |
|
import gradio as gr |
|
|
|
from peft import PeftModel, PeftConfig |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") |
|
peft_model_id = "kimmeoungjun/qlora-koalpaca" |
|
config = PeftConfig.from_pretrained(peft_model_id) |
|
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path) |
|
model = PeftModel.from_pretrained(model, peft_model_id).to(device) |
|
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) |
|
|
|
def generate(q): |
|
inputs = tokenizer(f"### 질문: {q}\n\n### 답변:", return_tensors='pt', return_token_type_ids=False) |
|
outputs = model.generate( |
|
**{k: v.to(device) for k, v in inputs.items()}, |
|
max_new_tokens=256, |
|
do_sample=True, |
|
eos_token_id=2, |
|
) |
|
result = tokenizer.decode(outputs[0]) |
|
answer_idx = result.find("### 답변:") |
|
answer = result[answer_idx + 7:].strip() |
|
return answer |
|
|
|
gr.Interface(generate, "text", "text").launch(share=True) |