File size: 3,571 Bytes
6378bf1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import gradio as gr
from langchain.chains import RetrievalQA
from langchain.vectorstores import Chroma
from langchain.document_loaders import PyPDFLoader
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.schema import Document
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer

# OCR-Ersatz: LayoutLMv3 für Textextraktion aus PDFs
from transformers import LayoutLMv3Processor
from pdf2image import convert_from_path
from PIL import Image
import torch

class LayoutLMv3OCR:
    def __init__(self):
        self.processor = LayoutLMv3Processor.from_pretrained("microsoft/layoutlmv3-base")
        self.model = AutoModelForSeq2SeqLM.from_pretrained("microsoft/layoutlmv3-base-finetuned", num_labels=2)

    def extract_text(self, pdf_path):
        pages = convert_from_path(pdf_path)
        extracted_texts = []
        for page in pages:
            encoding = self.processor(images=page, return_tensors="pt")
            outputs = self.model(**encoding)
            logits = outputs.logits
            predictions = torch.argmax(logits, dim=-1).squeeze()
            tokens = self.processor.tokenizer.convert_ids_to_tokens(encoding.input_ids[0])
            page_text = " ".join([token for token, pred in zip(tokens, predictions) if pred == 1])
            extracted_texts.append(page_text)
        return extracted_texts

# Initialisiere OCR
ocr_tool = LayoutLMv3OCR()

# Embeddings und LLM konfigurieren
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
model_name = "google/flan-t5-base"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)

def flan_generate(input_text):
    inputs = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True)
    outputs = model.generate(**inputs, max_length=512)
    return tokenizer.decode(outputs[0], skip_special_tokens=True)

def process_pdf_and_create_rag(pdf_path):
    extracted_text = ocr_tool.extract_text(pdf_path)
    documents = []
    for page_num, text in enumerate(extracted_text, start=1):
        doc = Document(page_content=text, metadata={"page": page_num})
        documents.append(doc)
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
    split_docs = text_splitter.split_documents(documents)
    vector_store = Chroma.from_documents(split_docs, embedding=embeddings)
    retriever = vector_store.as_retriever()
    qa_chain = RetrievalQA(retriever=retriever, combine_documents_chain=flan_generate)
    return qa_chain

def chatbot_response(pdf_file, question):
    qa_chain = process_pdf_and_create_rag(pdf_file.name)
    response = qa_chain.run(question)
    relevant_pages = set()
    for doc in qa_chain.retriever.get_relevant_documents(question):
        relevant_pages.add(doc.metadata.get("page", "Unbekannt"))
    page_info = f" (Referenz: Seite(n) {', '.join(map(str, relevant_pages))})"
    return response + page_info

def gradio_interface():
    pdf_input = gr.File(label="PDF hochladen")
    question_input = gr.Textbox(label="Ihre Frage", placeholder="Geben Sie Ihre Frage hier ein...")
    response_output = gr.Textbox(label="Antwort")
    interface = gr.Interface(
        fn=chatbot_response,
        inputs=[pdf_input, question_input],
        outputs=response_output,
        title="RAG Chatbot (Deutsch)"
    )
    return interface

if __name__ == "__main__":
    interface = gradio_interface()
    interface.launch()