la04 commited on
Commit
6378bf1
·
verified ·
1 Parent(s): 733c1ca

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +84 -0
app.py ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from langchain.chains import RetrievalQA
3
+ from langchain.vectorstores import Chroma
4
+ from langchain.document_loaders import PyPDFLoader
5
+ from langchain.embeddings import HuggingFaceEmbeddings
6
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
7
+ from langchain.schema import Document
8
+ from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
9
+
10
+ # OCR-Ersatz: LayoutLMv3 für Textextraktion aus PDFs
11
+ from transformers import LayoutLMv3Processor
12
+ from pdf2image import convert_from_path
13
+ from PIL import Image
14
+ import torch
15
+
16
+ class LayoutLMv3OCR:
17
+ def __init__(self):
18
+ self.processor = LayoutLMv3Processor.from_pretrained("microsoft/layoutlmv3-base")
19
+ self.model = AutoModelForSeq2SeqLM.from_pretrained("microsoft/layoutlmv3-base-finetuned", num_labels=2)
20
+
21
+ def extract_text(self, pdf_path):
22
+ pages = convert_from_path(pdf_path)
23
+ extracted_texts = []
24
+ for page in pages:
25
+ encoding = self.processor(images=page, return_tensors="pt")
26
+ outputs = self.model(**encoding)
27
+ logits = outputs.logits
28
+ predictions = torch.argmax(logits, dim=-1).squeeze()
29
+ tokens = self.processor.tokenizer.convert_ids_to_tokens(encoding.input_ids[0])
30
+ page_text = " ".join([token for token, pred in zip(tokens, predictions) if pred == 1])
31
+ extracted_texts.append(page_text)
32
+ return extracted_texts
33
+
34
+ # Initialisiere OCR
35
+ ocr_tool = LayoutLMv3OCR()
36
+
37
+ # Embeddings und LLM konfigurieren
38
+ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
39
+ model_name = "google/flan-t5-base"
40
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
41
+ model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
42
+
43
+ def flan_generate(input_text):
44
+ inputs = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True)
45
+ outputs = model.generate(**inputs, max_length=512)
46
+ return tokenizer.decode(outputs[0], skip_special_tokens=True)
47
+
48
+ def process_pdf_and_create_rag(pdf_path):
49
+ extracted_text = ocr_tool.extract_text(pdf_path)
50
+ documents = []
51
+ for page_num, text in enumerate(extracted_text, start=1):
52
+ doc = Document(page_content=text, metadata={"page": page_num})
53
+ documents.append(doc)
54
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
55
+ split_docs = text_splitter.split_documents(documents)
56
+ vector_store = Chroma.from_documents(split_docs, embedding=embeddings)
57
+ retriever = vector_store.as_retriever()
58
+ qa_chain = RetrievalQA(retriever=retriever, combine_documents_chain=flan_generate)
59
+ return qa_chain
60
+
61
+ def chatbot_response(pdf_file, question):
62
+ qa_chain = process_pdf_and_create_rag(pdf_file.name)
63
+ response = qa_chain.run(question)
64
+ relevant_pages = set()
65
+ for doc in qa_chain.retriever.get_relevant_documents(question):
66
+ relevant_pages.add(doc.metadata.get("page", "Unbekannt"))
67
+ page_info = f" (Referenz: Seite(n) {', '.join(map(str, relevant_pages))})"
68
+ return response + page_info
69
+
70
+ def gradio_interface():
71
+ pdf_input = gr.File(label="PDF hochladen")
72
+ question_input = gr.Textbox(label="Ihre Frage", placeholder="Geben Sie Ihre Frage hier ein...")
73
+ response_output = gr.Textbox(label="Antwort")
74
+ interface = gr.Interface(
75
+ fn=chatbot_response,
76
+ inputs=[pdf_input, question_input],
77
+ outputs=response_output,
78
+ title="RAG Chatbot (Deutsch)"
79
+ )
80
+ return interface
81
+
82
+ if __name__ == "__main__":
83
+ interface = gradio_interface()
84
+ interface.launch()