Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from langchain.chains import RetrievalQA
|
3 |
+
from langchain.vectorstores import Chroma
|
4 |
+
from langchain.document_loaders import PyPDFLoader
|
5 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
6 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
+
from langchain.schema import Document
|
8 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
9 |
+
|
10 |
+
# OCR-Ersatz: LayoutLMv3 für Textextraktion aus PDFs
|
11 |
+
from transformers import LayoutLMv3Processor
|
12 |
+
from pdf2image import convert_from_path
|
13 |
+
from PIL import Image
|
14 |
+
import torch
|
15 |
+
|
16 |
+
class LayoutLMv3OCR:
|
17 |
+
def __init__(self):
|
18 |
+
self.processor = LayoutLMv3Processor.from_pretrained("microsoft/layoutlmv3-base")
|
19 |
+
self.model = AutoModelForSeq2SeqLM.from_pretrained("microsoft/layoutlmv3-base-finetuned", num_labels=2)
|
20 |
+
|
21 |
+
def extract_text(self, pdf_path):
|
22 |
+
pages = convert_from_path(pdf_path)
|
23 |
+
extracted_texts = []
|
24 |
+
for page in pages:
|
25 |
+
encoding = self.processor(images=page, return_tensors="pt")
|
26 |
+
outputs = self.model(**encoding)
|
27 |
+
logits = outputs.logits
|
28 |
+
predictions = torch.argmax(logits, dim=-1).squeeze()
|
29 |
+
tokens = self.processor.tokenizer.convert_ids_to_tokens(encoding.input_ids[0])
|
30 |
+
page_text = " ".join([token for token, pred in zip(tokens, predictions) if pred == 1])
|
31 |
+
extracted_texts.append(page_text)
|
32 |
+
return extracted_texts
|
33 |
+
|
34 |
+
# Initialisiere OCR
|
35 |
+
ocr_tool = LayoutLMv3OCR()
|
36 |
+
|
37 |
+
# Embeddings und LLM konfigurieren
|
38 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
|
39 |
+
model_name = "google/flan-t5-base"
|
40 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
41 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
42 |
+
|
43 |
+
def flan_generate(input_text):
|
44 |
+
inputs = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True)
|
45 |
+
outputs = model.generate(**inputs, max_length=512)
|
46 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
47 |
+
|
48 |
+
def process_pdf_and_create_rag(pdf_path):
|
49 |
+
extracted_text = ocr_tool.extract_text(pdf_path)
|
50 |
+
documents = []
|
51 |
+
for page_num, text in enumerate(extracted_text, start=1):
|
52 |
+
doc = Document(page_content=text, metadata={"page": page_num})
|
53 |
+
documents.append(doc)
|
54 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
55 |
+
split_docs = text_splitter.split_documents(documents)
|
56 |
+
vector_store = Chroma.from_documents(split_docs, embedding=embeddings)
|
57 |
+
retriever = vector_store.as_retriever()
|
58 |
+
qa_chain = RetrievalQA(retriever=retriever, combine_documents_chain=flan_generate)
|
59 |
+
return qa_chain
|
60 |
+
|
61 |
+
def chatbot_response(pdf_file, question):
|
62 |
+
qa_chain = process_pdf_and_create_rag(pdf_file.name)
|
63 |
+
response = qa_chain.run(question)
|
64 |
+
relevant_pages = set()
|
65 |
+
for doc in qa_chain.retriever.get_relevant_documents(question):
|
66 |
+
relevant_pages.add(doc.metadata.get("page", "Unbekannt"))
|
67 |
+
page_info = f" (Referenz: Seite(n) {', '.join(map(str, relevant_pages))})"
|
68 |
+
return response + page_info
|
69 |
+
|
70 |
+
def gradio_interface():
|
71 |
+
pdf_input = gr.File(label="PDF hochladen")
|
72 |
+
question_input = gr.Textbox(label="Ihre Frage", placeholder="Geben Sie Ihre Frage hier ein...")
|
73 |
+
response_output = gr.Textbox(label="Antwort")
|
74 |
+
interface = gr.Interface(
|
75 |
+
fn=chatbot_response,
|
76 |
+
inputs=[pdf_input, question_input],
|
77 |
+
outputs=response_output,
|
78 |
+
title="RAG Chatbot (Deutsch)"
|
79 |
+
)
|
80 |
+
return interface
|
81 |
+
|
82 |
+
if __name__ == "__main__":
|
83 |
+
interface = gradio_interface()
|
84 |
+
interface.launch()
|