RAG_test_1 / app.py
la04's picture
Update app.py
812f60c verified
raw
history blame
5.24 kB
import gradio as gr
import os
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.chains import ConversationalRetrievalChain
from langchain_community.llms import HuggingFaceEndpoint
from langchain.memory import ConversationBufferMemory
# Liste der Modelle
list_llm = ["google/flan-t5-small", "distilbert-base-uncased"] # Leichtere, CPU-freundliche Modelle
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
# PDF-Dokument laden und aufteilen
def load_doc(list_file_path):
loaders = [PyPDFLoader(x) for x in list_file_path]
pages = []
for loader in loaders:
pages.extend(loader.load())
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=512, # Kleinere Chunks für schnellere Verarbeitung
chunk_overlap=32
)
doc_splits = text_splitter.split_documents(pages)
return doc_splits
# Erstellen der Vektordatenbank
def create_db(splits):
embeddings = HuggingFaceEmbeddings()
vectordb = FAISS.from_documents(splits, embeddings)
return vectordb
# Initialisierung des LLM Chains
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db):
llm = HuggingFaceEndpoint(
repo_id=llm_model,
temperature=temperature,
max_new_tokens=max_tokens,
top_k=top_k
)
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key='answer',
return_messages=True
)
retriever = vector_db.as_retriever()
qa_chain = ConversationalRetrievalChain.from_llm(
llm,
retriever=retriever,
chain_type="stuff",
memory=memory,
return_source_documents=True,
verbose=False
)
return qa_chain
# Initialisierung der Datenbank
def initialize_database(list_file_obj):
list_file_path = [x.name for x in list_file_obj if x is not None]
doc_splits = load_doc(list_file_path)
vector_db = create_db(doc_splits)
return vector_db, "Datenbank erfolgreich erstellt!"
# Initialisierung des LLMs
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db):
llm_name = list_llm[llm_option]
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db)
return qa_chain, "LLM erfolgreich initialisiert! Chatbot ist bereit."
def format_chat_history(message, chat_history):
formatted_chat_history = []
for user_message, bot_message in chat_history:
formatted_chat_history.append(f"User: {user_message}")
formatted_chat_history.append(f"Assistant: {bot_message}")
return formatted_chat_history
# Chat-Funktion
def conversation(qa_chain, message, history):
formatted_chat_history = format_chat_history(message, history)
response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history})
response_answer = response["answer"]
if "Helpful Answer:" in response_answer:
response_answer = response_answer.split("Helpful Answer:")[-1]
new_history = history + [(message, response_answer)]
return qa_chain, gr.update(value=""), new_history
# Gradio App erstellen
def demo():
with gr.Blocks() as demo:
vector_db = gr.State()
qa_chain = gr.State()
gr.HTML("<center><h1>RAG PDF Chatbot</h1></center>")
with gr.Row():
with gr.Column():
gr.Markdown("### Schritt 1: Lade PDF-Dokument hoch")
document = gr.Files(height=300, file_count="multiple", file_types=[".pdf"], interactive=True)
db_btn = gr.Button("Erstelle Vektordatenbank")
db_progress = gr.Textbox(value="Nicht initialisiert", show_label=False)
gr.Markdown("### Schritt 2: Wähle LLM und Einstellungen")
llm_btn = gr.Radio(list_llm_simple, label="Verfügbare Modelle", value=list_llm_simple[0], type="index")
slider_temperature = gr.Slider(0.01, 1.0, value=0.5, step=0.1, label="Temperature")
slider_maxtokens = gr.Slider(64, 512, value=256, step=64, label="Max Tokens")
slider_topk = gr.Slider(1, 10, value=3, step=1, label="Top-k")
qachain_btn = gr.Button("Initialisiere QA-Chatbot")
llm_progress = gr.Textbox(value="Nicht initialisiert", show_label=False)
with gr.Column():
gr.Markdown("### Schritt 3: Stelle Fragen an dein Dokument")
chatbot = gr.Chatbot(height=400, type="messages")
msg = gr.Textbox(placeholder="Frage stellen...")
submit_btn = gr.Button("Absenden")
db_btn.click(initialize_database, [document], [vector_db, db_progress])
qachain_btn.click(initialize_LLM, [llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], [qa_chain, llm_progress])
msg.submit(conversation, [qa_chain, msg, chatbot], [qa_chain, msg, chatbot])
submit_btn.click(conversation, [qa_chain, msg, chatbot], [qa_chain, msg, chatbot])
demo.launch(debug=True)
if __name__ == "__main__":
demo()