Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -9,9 +9,11 @@ from langchain.memory import ConversationBufferMemory
|
|
9 |
from langchain_community.llms import HuggingFacePipeline
|
10 |
from transformers import pipeline
|
11 |
|
|
|
12 |
EMBEDDINGS_MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"
|
13 |
LLM_MODEL_NAME = "google/flan-t5-small"
|
14 |
|
|
|
15 |
def load_and_split_docs(list_file_path):
|
16 |
if not list_file_path:
|
17 |
return [], "Fehler: Keine Dokumente gefunden!"
|
@@ -22,10 +24,12 @@ def load_and_split_docs(list_file_path):
|
|
22 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=32)
|
23 |
return text_splitter.split_documents(documents)
|
24 |
|
|
|
25 |
def create_db(docs):
|
26 |
embeddings = HuggingFaceEmbeddings(model_name=EMBEDDINGS_MODEL_NAME)
|
27 |
return FAISS.from_documents(docs, embeddings)
|
28 |
|
|
|
29 |
def initialize_database(list_file_obj):
|
30 |
if not list_file_obj or all(x is None for x in list_file_obj):
|
31 |
return None, "Fehler: Keine Dateien hochgeladen!"
|
@@ -34,10 +38,18 @@ def initialize_database(list_file_obj):
|
|
34 |
vector_db = create_db(doc_splits)
|
35 |
return vector_db, "Datenbank erfolgreich erstellt!"
|
36 |
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
local_pipeline = pipeline(
|
39 |
"text2text-generation",
|
40 |
-
model=
|
41 |
max_length=max_tokens,
|
42 |
temperature=temperature
|
43 |
)
|
@@ -51,6 +63,7 @@ def initialize_llm_chain(llm_model, temperature, max_tokens, vector_db):
|
|
51 |
return_source_documents=True
|
52 |
)
|
53 |
|
|
|
54 |
def conversation(qa_chain, message, history):
|
55 |
if qa_chain is None:
|
56 |
return None, "Der QA-Chain wurde nicht initialisiert!", history
|
@@ -63,6 +76,7 @@ def conversation(qa_chain, message, history):
|
|
63 |
except Exception as e:
|
64 |
return qa_chain, f"Fehler: {str(e)}", history
|
65 |
|
|
|
66 |
def demo():
|
67 |
with gr.Blocks() as demo:
|
68 |
vector_db = gr.State()
|
@@ -83,8 +97,9 @@ def demo():
|
|
83 |
msg = gr.Textbox(placeholder="Frage eingeben...")
|
84 |
submit_btn = gr.Button("Absenden")
|
85 |
|
|
|
86 |
db_btn.click(initialize_database, [document], [vector_db, db_status])
|
87 |
-
qachain_btn.click(
|
88 |
submit_btn.click(conversation, [qa_chain, msg, []], [qa_chain, "message", "history"])
|
89 |
|
90 |
demo.launch(debug=True, enable_queue=True)
|
|
|
9 |
from langchain_community.llms import HuggingFacePipeline
|
10 |
from transformers import pipeline
|
11 |
|
12 |
+
# Embeddings- und LLM-Modelle
|
13 |
EMBEDDINGS_MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"
|
14 |
LLM_MODEL_NAME = "google/flan-t5-small"
|
15 |
|
16 |
+
# **Dokumente laden und aufteilen**
|
17 |
def load_and_split_docs(list_file_path):
|
18 |
if not list_file_path:
|
19 |
return [], "Fehler: Keine Dokumente gefunden!"
|
|
|
24 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=32)
|
25 |
return text_splitter.split_documents(documents)
|
26 |
|
27 |
+
# **Vektor-Datenbank mit FAISS erstellen**
|
28 |
def create_db(docs):
|
29 |
embeddings = HuggingFaceEmbeddings(model_name=EMBEDDINGS_MODEL_NAME)
|
30 |
return FAISS.from_documents(docs, embeddings)
|
31 |
|
32 |
+
# **Datenbank initialisieren**
|
33 |
def initialize_database(list_file_obj):
|
34 |
if not list_file_obj or all(x is None for x in list_file_obj):
|
35 |
return None, "Fehler: Keine Dateien hochgeladen!"
|
|
|
38 |
vector_db = create_db(doc_splits)
|
39 |
return vector_db, "Datenbank erfolgreich erstellt!"
|
40 |
|
41 |
+
# **LLM-Kette initialisieren (Wrapper)**
|
42 |
+
def initialize_llm_chain_wrapper(temperature, max_tokens, vector_db):
|
43 |
+
if vector_db is None:
|
44 |
+
return None, "Fehler: Vektordatenbank nicht initialisiert!"
|
45 |
+
qa_chain = initialize_llm_chain(temperature, max_tokens, vector_db)
|
46 |
+
return qa_chain, "QA-Chatbot ist bereit!"
|
47 |
+
|
48 |
+
# **LLM-Kette erstellen**
|
49 |
+
def initialize_llm_chain(temperature, max_tokens, vector_db):
|
50 |
local_pipeline = pipeline(
|
51 |
"text2text-generation",
|
52 |
+
model=LLM_MODEL_NAME,
|
53 |
max_length=max_tokens,
|
54 |
temperature=temperature
|
55 |
)
|
|
|
63 |
return_source_documents=True
|
64 |
)
|
65 |
|
66 |
+
# **Konversation mit QA-Kette führen**
|
67 |
def conversation(qa_chain, message, history):
|
68 |
if qa_chain is None:
|
69 |
return None, "Der QA-Chain wurde nicht initialisiert!", history
|
|
|
76 |
except Exception as e:
|
77 |
return qa_chain, f"Fehler: {str(e)}", history
|
78 |
|
79 |
+
# **Gradio-Demo erstellen**
|
80 |
def demo():
|
81 |
with gr.Blocks() as demo:
|
82 |
vector_db = gr.State()
|
|
|
97 |
msg = gr.Textbox(placeholder="Frage eingeben...")
|
98 |
submit_btn = gr.Button("Absenden")
|
99 |
|
100 |
+
# Button-Events definieren
|
101 |
db_btn.click(initialize_database, [document], [vector_db, db_status])
|
102 |
+
qachain_btn.click(initialize_llm_chain_wrapper, [slider_temperature, slider_max_tokens, vector_db], [qa_chain])
|
103 |
submit_btn.click(conversation, [qa_chain, msg, []], [qa_chain, "message", "history"])
|
104 |
|
105 |
demo.launch(debug=True, enable_queue=True)
|