Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,88 +1,99 @@
|
|
1 |
-
import gradio as gr
|
2 |
import os
|
3 |
-
|
4 |
from langchain.document_loaders import PyPDFLoader
|
|
|
5 |
from langchain.embeddings import HuggingFaceEmbeddings
|
|
|
6 |
from langchain.chains import ConversationalRetrievalChain
|
7 |
from langchain.memory import ConversationBufferMemory
|
8 |
-
from langchain.llms import
|
9 |
-
from
|
10 |
|
11 |
-
|
|
|
|
|
12 |
|
13 |
-
|
|
|
14 |
loaders = [PyPDFLoader(x) for x in list_file_path]
|
15 |
-
|
16 |
for loader in loaders:
|
17 |
-
|
18 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=32)
|
19 |
-
doc_splits = text_splitter.split_documents(
|
20 |
return doc_splits
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
33 |
)
|
|
|
34 |
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
35 |
retriever = vector_db.as_retriever()
|
|
|
|
|
36 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
37 |
llm,
|
38 |
retriever=retriever,
|
39 |
-
chain_type="stuff",
|
40 |
memory=memory,
|
41 |
-
return_source_documents=True
|
42 |
)
|
43 |
return qa_chain
|
44 |
|
|
|
45 |
def initialize_database(list_file_obj):
|
46 |
list_file_path = [x.name for x in list_file_obj if x is not None]
|
47 |
-
doc_splits =
|
48 |
vector_db = create_db(doc_splits)
|
49 |
return vector_db, "Datenbank erfolgreich erstellt!"
|
50 |
|
51 |
-
def
|
52 |
-
|
53 |
-
qa_chain
|
54 |
-
return qa_chain, "Chatbot ist bereit."
|
55 |
|
|
|
56 |
def conversation(qa_chain, message, history):
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
return qa_chain, gr.update(value=""), new_history
|
62 |
|
|
|
63 |
def demo():
|
64 |
with gr.Blocks() as demo:
|
65 |
vector_db = gr.State()
|
66 |
qa_chain = gr.State()
|
67 |
-
|
|
|
68 |
with gr.Row():
|
69 |
with gr.Column():
|
70 |
-
document = gr.Files(file_types=[".pdf"],
|
71 |
db_btn = gr.Button("Erstelle Vektordatenbank")
|
72 |
-
|
73 |
-
llm_btn = gr.Radio(["Flan-T5-Small", "MiniLM"], label="Verfügbare Modelle")
|
74 |
slider_temperature = gr.Slider(0.01, 1.0, value=0.5, label="Temperature")
|
75 |
-
|
76 |
qachain_btn = gr.Button("Initialisiere QA-Chatbot")
|
77 |
|
78 |
with gr.Column():
|
79 |
chatbot = gr.Chatbot(height=400)
|
80 |
-
msg = gr.Textbox(placeholder="Frage
|
81 |
submit_btn = gr.Button("Absenden")
|
82 |
|
83 |
-
db_btn.click(initialize_database, [document], [vector_db,
|
84 |
-
qachain_btn.click(
|
85 |
submit_btn.click(conversation, [qa_chain, msg, chatbot], [qa_chain, msg, chatbot])
|
|
|
86 |
demo.launch(debug=True)
|
87 |
|
88 |
if __name__ == "__main__":
|
|
|
|
|
1 |
import os
|
2 |
+
import gradio as gr
|
3 |
from langchain.document_loaders import PyPDFLoader
|
4 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
from langchain.embeddings import HuggingFaceEmbeddings
|
6 |
+
from langchain.vectorstores import FAISS
|
7 |
from langchain.chains import ConversationalRetrievalChain
|
8 |
from langchain.memory import ConversationBufferMemory
|
9 |
+
from langchain.llms import HuggingFacePipeline
|
10 |
+
from transformers import pipeline
|
11 |
|
12 |
+
# **Embeddings-Modell (kein API-Key nötig, lokal geladen)**
|
13 |
+
EMBEDDINGS_MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"
|
14 |
+
LLM_MODEL_NAME = "google/flan-t5-small" # Alternativ: "google/flan-t5-base", etc.
|
15 |
|
16 |
+
# **Dokumente laden und aufteilen**
|
17 |
+
def load_and_split_docs(list_file_path):
|
18 |
loaders = [PyPDFLoader(x) for x in list_file_path]
|
19 |
+
documents = []
|
20 |
for loader in loaders:
|
21 |
+
documents.extend(loader.load())
|
22 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=32)
|
23 |
+
doc_splits = text_splitter.split_documents(documents)
|
24 |
return doc_splits
|
25 |
|
26 |
+
# **Vektor-Datenbank mit FAISS erstellen**
|
27 |
+
def create_db(docs):
|
28 |
+
embeddings = HuggingFaceEmbeddings(model_name=EMBEDDINGS_MODEL_NAME)
|
29 |
+
faiss_index = FAISS.from_documents(docs, embeddings)
|
30 |
+
return faiss_index
|
31 |
|
32 |
+
# **LLM-Kette initialisieren**
|
33 |
+
def initialize_llm_chain(llm_model, temperature, max_tokens, vector_db):
|
34 |
+
# Hugging Face Pipeline lokal verwenden
|
35 |
+
local_pipeline = pipeline(
|
36 |
+
"text2text-generation",
|
37 |
+
model=llm_model,
|
38 |
+
max_length=max_tokens,
|
39 |
+
temperature=temperature
|
40 |
)
|
41 |
+
llm = HuggingFacePipeline(pipeline=local_pipeline)
|
42 |
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
43 |
retriever = vector_db.as_retriever()
|
44 |
+
|
45 |
+
# Retrieval-Augmented QA-Kette
|
46 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
47 |
llm,
|
48 |
retriever=retriever,
|
|
|
49 |
memory=memory,
|
50 |
+
return_source_documents=True
|
51 |
)
|
52 |
return qa_chain
|
53 |
|
54 |
+
# **Datenbank und Kette initialisieren**
|
55 |
def initialize_database(list_file_obj):
|
56 |
list_file_path = [x.name for x in list_file_obj if x is not None]
|
57 |
+
doc_splits = load_and_split_docs(list_file_path)
|
58 |
vector_db = create_db(doc_splits)
|
59 |
return vector_db, "Datenbank erfolgreich erstellt!"
|
60 |
|
61 |
+
def initialize_llm_chain_wrapper(llm_temperature, max_tokens, vector_db):
|
62 |
+
qa_chain = initialize_llm_chain(LLM_MODEL_NAME, llm_temperature, max_tokens, vector_db)
|
63 |
+
return qa_chain, "QA-Chatbot ist bereit!"
|
|
|
64 |
|
65 |
+
# **Konversation mit QA-Kette führen**
|
66 |
def conversation(qa_chain, message, history):
|
67 |
+
response = qa_chain({"question": message, "chat_history": history})
|
68 |
+
response_text = response["answer"]
|
69 |
+
sources = [doc.metadata["source"] for doc in response["source_documents"]]
|
70 |
+
return qa_chain, response_text, history + [(message, response_text)]
|
|
|
71 |
|
72 |
+
# **Gradio-Benutzeroberfläche**
|
73 |
def demo():
|
74 |
with gr.Blocks() as demo:
|
75 |
vector_db = gr.State()
|
76 |
qa_chain = gr.State()
|
77 |
+
|
78 |
+
gr.HTML("<center><h1>RAG Chatbot mit FAISS und lokalen Modellen</h1></center>")
|
79 |
with gr.Row():
|
80 |
with gr.Column():
|
81 |
+
document = gr.Files(file_types=[".pdf"], label="PDF hochladen")
|
82 |
db_btn = gr.Button("Erstelle Vektordatenbank")
|
83 |
+
db_status = gr.Textbox(value="Status: Nicht initialisiert", show_label=False)
|
|
|
84 |
slider_temperature = gr.Slider(0.01, 1.0, value=0.5, label="Temperature")
|
85 |
+
slider_max_tokens = gr.Slider(64, 512, value=256, label="Max Tokens")
|
86 |
qachain_btn = gr.Button("Initialisiere QA-Chatbot")
|
87 |
|
88 |
with gr.Column():
|
89 |
chatbot = gr.Chatbot(height=400)
|
90 |
+
msg = gr.Textbox(placeholder="Frage eingeben...")
|
91 |
submit_btn = gr.Button("Absenden")
|
92 |
|
93 |
+
db_btn.click(initialize_database, [document], [vector_db, db_status])
|
94 |
+
qachain_btn.click(initialize_llm_chain_wrapper, [slider_temperature, slider_max_tokens, vector_db], [qa_chain])
|
95 |
submit_btn.click(conversation, [qa_chain, msg, chatbot], [qa_chain, msg, chatbot])
|
96 |
+
|
97 |
demo.launch(debug=True)
|
98 |
|
99 |
if __name__ == "__main__":
|