la04 commited on
Commit
6dedc06
·
verified ·
1 Parent(s): f1c2bc3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -4
app.py CHANGED
@@ -58,7 +58,7 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db):
58
  # LLM initialisieren
59
  def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db):
60
  if vector_db is None:
61
- return None, "Datenbank wurde nicht erstellt!"
62
  llm_name = list_llm[llm_option]
63
  qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db)
64
  return qa_chain, "QA-Kette initialisiert. Chatbot ist bereit!"
@@ -71,8 +71,7 @@ def conversation(qa_chain, message, history):
71
  return qa_chain, [{"role": "system", "content": "Bitte eine Frage eingeben!"}], history
72
  response = qa_chain.invoke({"question": message, "chat_history": history})
73
  response_text = response.get("answer", "Keine Antwort verfügbar.")
74
- sources = [doc.metadata["source"] for doc in response.get("source_documents", [])]
75
- formatted_response = history + [{"role": "assistant", "content": response_text}]
76
  return qa_chain, formatted_response, formatted_response
77
 
78
  # Demo erstellen
@@ -88,7 +87,7 @@ def demo():
88
  slider_maxtokens = gr.Slider(128, 2048, 512, label="Max Tokens")
89
  slider_topk = gr.Slider(1, 10, 3, label="Top-k")
90
  qachain_btn = gr.Button("Initialisiere QA-Chatbot")
91
- chatbot = gr.Chatbot(label="Chatbot", height=400)
92
  msg = gr.Textbox(label="Frage stellen")
93
  submit_btn = gr.Button("Absenden")
94
 
 
58
  # LLM initialisieren
59
  def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db):
60
  if vector_db is None:
61
+ return None, "Fehler: Datenbank wurde nicht erstellt!"
62
  llm_name = list_llm[llm_option]
63
  qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db)
64
  return qa_chain, "QA-Kette initialisiert. Chatbot ist bereit!"
 
71
  return qa_chain, [{"role": "system", "content": "Bitte eine Frage eingeben!"}], history
72
  response = qa_chain.invoke({"question": message, "chat_history": history})
73
  response_text = response.get("answer", "Keine Antwort verfügbar.")
74
+ formatted_response = history + [{"role": "user", "content": message}, {"role": "assistant", "content": response_text}]
 
75
  return qa_chain, formatted_response, formatted_response
76
 
77
  # Demo erstellen
 
87
  slider_maxtokens = gr.Slider(128, 2048, 512, label="Max Tokens")
88
  slider_topk = gr.Slider(1, 10, 3, label="Top-k")
89
  qachain_btn = gr.Button("Initialisiere QA-Chatbot")
90
+ chatbot = gr.Chatbot(label="Chatbot", height=400, type="messages")
91
  msg = gr.Textbox(label="Frage stellen")
92
  submit_btn = gr.Button("Absenden")
93