Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,76 +1,87 @@
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
-
from langchain_community.vectorstores import FAISS
|
4 |
from langchain_community.document_loaders import PyPDFLoader
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
-
from
|
7 |
-
from langchain_community.
|
8 |
from langchain.chains import ConversationalRetrievalChain
|
9 |
from langchain.memory import ConversationBufferMemory
|
10 |
|
11 |
-
#
|
12 |
-
api_token = os.getenv("HF_TOKEN")
|
13 |
|
14 |
-
#
|
15 |
list_llm = ["google/flan-t5-small", "google/flan-t5-base"]
|
16 |
|
17 |
-
#
|
18 |
def load_doc(list_file_path):
|
|
|
|
|
19 |
loaders = [PyPDFLoader(x) for x in list_file_path]
|
20 |
-
|
21 |
for loader in loaders:
|
22 |
-
|
23 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=64)
|
24 |
-
return text_splitter.split_documents(
|
25 |
|
26 |
-
#
|
27 |
def create_db(splits):
|
28 |
-
embeddings = HuggingFaceEmbeddings()
|
29 |
return FAISS.from_documents(splits, embeddings)
|
30 |
|
31 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db):
|
|
|
|
|
33 |
llm = HuggingFaceEndpoint(
|
34 |
repo_id=llm_model,
|
35 |
-
huggingfacehub_api_token=api_token,
|
36 |
temperature=temperature,
|
37 |
max_new_tokens=max_tokens,
|
38 |
top_k=top_k,
|
39 |
)
|
40 |
memory = ConversationBufferMemory(memory_key="chat_history", output_key="answer", return_messages=True)
|
41 |
retriever = vector_db.as_retriever()
|
42 |
-
|
43 |
llm, retriever=retriever, chain_type="stuff", memory=memory, return_source_documents=True
|
44 |
)
|
45 |
-
return qa_chain
|
46 |
|
47 |
-
#
|
48 |
-
def initialize_database(list_file_obj):
|
49 |
-
list_file_path = [x.name for x in list_file_obj if x is not None]
|
50 |
-
doc_splits = load_doc(list_file_path)
|
51 |
-
vector_db = create_db(doc_splits)
|
52 |
-
return vector_db, "Datenbank erfolgreich erstellt!"
|
53 |
-
|
54 |
-
# **LLM initialisieren**
|
55 |
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db):
|
|
|
|
|
56 |
llm_name = list_llm[llm_option]
|
57 |
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db)
|
58 |
return qa_chain, "QA-Kette initialisiert. Chatbot ist bereit!"
|
59 |
|
60 |
-
#
|
61 |
def conversation(qa_chain, message, history):
|
|
|
|
|
|
|
|
|
62 |
response = qa_chain.invoke({"question": message, "chat_history": history})
|
63 |
-
|
64 |
-
|
|
|
|
|
65 |
|
66 |
-
#
|
67 |
def demo():
|
68 |
with gr.Blocks() as demo:
|
69 |
vector_db = gr.State()
|
70 |
qa_chain = gr.State()
|
71 |
-
|
72 |
-
gr.
|
73 |
-
document = gr.Files(label="Lade PDF-Dokumente hoch", file_types=[".pdf"])
|
74 |
db_btn = gr.Button("Erstelle Vektordatenbank")
|
75 |
llm_btn = gr.Radio(["Flan-T5 Small", "Flan-T5 Base"], label="Verfügbare LLMs", value="Flan-T5 Small", type="index")
|
76 |
slider_temperature = gr.Slider(0.01, 1.0, 0.5, label="Temperature")
|
@@ -85,7 +96,7 @@ def demo():
|
|
85 |
qachain_btn.click(initialize_LLM, inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], outputs=[qa_chain])
|
86 |
submit_btn.click(conversation, inputs=[qa_chain, msg, chatbot], outputs=[qa_chain, chatbot, chatbot])
|
87 |
|
88 |
-
demo.launch()
|
89 |
|
90 |
if __name__ == "__main__":
|
91 |
demo()
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
|
|
3 |
from langchain_community.document_loaders import PyPDFLoader
|
4 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
+
from langchain_huggingface import HuggingFaceEmbeddings, HuggingFaceEndpoint
|
6 |
+
from langchain_community.vectorstores import FAISS
|
7 |
from langchain.chains import ConversationalRetrievalChain
|
8 |
from langchain.memory import ConversationBufferMemory
|
9 |
|
10 |
+
# API-Token
|
11 |
+
api_token = os.getenv("HF_TOKEN")
|
12 |
|
13 |
+
# LLM-Optionen
|
14 |
list_llm = ["google/flan-t5-small", "google/flan-t5-base"]
|
15 |
|
16 |
+
# Dokumente laden und aufteilen
|
17 |
def load_doc(list_file_path):
|
18 |
+
if not list_file_path:
|
19 |
+
return [], "Fehler: Keine Dokumente gefunden!"
|
20 |
loaders = [PyPDFLoader(x) for x in list_file_path]
|
21 |
+
documents = []
|
22 |
for loader in loaders:
|
23 |
+
documents.extend(loader.load())
|
24 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=64)
|
25 |
+
return text_splitter.split_documents(documents)
|
26 |
|
27 |
+
# Vektor-Datenbank erstellen
|
28 |
def create_db(splits):
|
29 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
30 |
return FAISS.from_documents(splits, embeddings)
|
31 |
|
32 |
+
# Datenbank initialisieren
|
33 |
+
def initialize_database(list_file_obj):
|
34 |
+
if not list_file_obj:
|
35 |
+
return None, "Fehler: Keine Dateien hochgeladen!"
|
36 |
+
list_file_path = [x.name for x in list_file_obj if x is not None]
|
37 |
+
doc_splits = load_doc(list_file_path)
|
38 |
+
vector_db = create_db(doc_splits)
|
39 |
+
return vector_db, "Datenbank erfolgreich erstellt!"
|
40 |
+
|
41 |
+
# LLM-Kette initialisieren
|
42 |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db):
|
43 |
+
if vector_db is None:
|
44 |
+
return None, "Fehler: Keine Vektordatenbank verfügbar."
|
45 |
llm = HuggingFaceEndpoint(
|
46 |
repo_id=llm_model,
|
47 |
+
huggingfacehub_api_token=api_token,
|
48 |
temperature=temperature,
|
49 |
max_new_tokens=max_tokens,
|
50 |
top_k=top_k,
|
51 |
)
|
52 |
memory = ConversationBufferMemory(memory_key="chat_history", output_key="answer", return_messages=True)
|
53 |
retriever = vector_db.as_retriever()
|
54 |
+
return ConversationalRetrievalChain.from_llm(
|
55 |
llm, retriever=retriever, chain_type="stuff", memory=memory, return_source_documents=True
|
56 |
)
|
|
|
57 |
|
58 |
+
# LLM initialisieren
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db):
|
60 |
+
if vector_db is None:
|
61 |
+
return None, "Datenbank wurde nicht erstellt!"
|
62 |
llm_name = list_llm[llm_option]
|
63 |
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db)
|
64 |
return qa_chain, "QA-Kette initialisiert. Chatbot ist bereit!"
|
65 |
|
66 |
+
# Konversation
|
67 |
def conversation(qa_chain, message, history):
|
68 |
+
if qa_chain is None:
|
69 |
+
return None, [{"role": "system", "content": "Die QA-Kette wurde nicht initialisiert."}], history
|
70 |
+
if not message.strip():
|
71 |
+
return qa_chain, [{"role": "system", "content": "Bitte eine Frage eingeben!"}], history
|
72 |
response = qa_chain.invoke({"question": message, "chat_history": history})
|
73 |
+
response_text = response.get("answer", "Keine Antwort verfügbar.")
|
74 |
+
sources = [doc.metadata["source"] for doc in response.get("source_documents", [])]
|
75 |
+
formatted_response = history + [{"role": "assistant", "content": response_text}]
|
76 |
+
return qa_chain, formatted_response, formatted_response
|
77 |
|
78 |
+
# Demo erstellen
|
79 |
def demo():
|
80 |
with gr.Blocks() as demo:
|
81 |
vector_db = gr.State()
|
82 |
qa_chain = gr.State()
|
83 |
+
gr.Markdown("<center><h1>PDF-Chatbot mit kostenlosen Modellen</h1></center>")
|
84 |
+
document = gr.Files(label="PDF-Dokument hochladen")
|
|
|
85 |
db_btn = gr.Button("Erstelle Vektordatenbank")
|
86 |
llm_btn = gr.Radio(["Flan-T5 Small", "Flan-T5 Base"], label="Verfügbare LLMs", value="Flan-T5 Small", type="index")
|
87 |
slider_temperature = gr.Slider(0.01, 1.0, 0.5, label="Temperature")
|
|
|
96 |
qachain_btn.click(initialize_LLM, inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], outputs=[qa_chain])
|
97 |
submit_btn.click(conversation, inputs=[qa_chain, msg, chatbot], outputs=[qa_chain, chatbot, chatbot])
|
98 |
|
99 |
+
demo.launch(debug=True)
|
100 |
|
101 |
if __name__ == "__main__":
|
102 |
demo()
|