Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,7 @@ import gradio as gr
|
|
2 |
from langchain.vectorstores import Chroma
|
3 |
from langchain_community.document_loaders import PyPDFLoader
|
4 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
5 |
-
from transformers import LayoutLMv3Processor,
|
6 |
from langchain.chains import RetrievalQA
|
7 |
from langchain.prompts import PromptTemplate
|
8 |
from pdf2image import convert_from_path
|
@@ -11,15 +11,19 @@ import os
|
|
11 |
class LayoutLMv3OCR:
|
12 |
def __init__(self):
|
13 |
self.processor = LayoutLMv3Processor.from_pretrained("microsoft/layoutlmv3-base")
|
14 |
-
|
|
|
15 |
|
16 |
def extract_text(self, pdf_path):
|
17 |
images = convert_from_path(pdf_path)
|
18 |
text_pages = []
|
19 |
for image in images:
|
|
|
20 |
inputs = self.processor(images=image, return_tensors="pt")
|
21 |
-
|
22 |
-
|
|
|
|
|
23 |
text_pages.append(text)
|
24 |
return text_pages
|
25 |
|
|
|
2 |
from langchain.vectorstores import Chroma
|
3 |
from langchain_community.document_loaders import PyPDFLoader
|
4 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
5 |
+
from transformers import LayoutLMv3Processor, AutoModelForTokenClassification
|
6 |
from langchain.chains import RetrievalQA
|
7 |
from langchain.prompts import PromptTemplate
|
8 |
from pdf2image import convert_from_path
|
|
|
11 |
class LayoutLMv3OCR:
|
12 |
def __init__(self):
|
13 |
self.processor = LayoutLMv3Processor.from_pretrained("microsoft/layoutlmv3-base")
|
14 |
+
# Ändere AutoModelForSeq2SeqLM zu AutoModelForTokenClassification
|
15 |
+
self.model = AutoModelForTokenClassification.from_pretrained("microsoft/layoutlmv3-base")
|
16 |
|
17 |
def extract_text(self, pdf_path):
|
18 |
images = convert_from_path(pdf_path)
|
19 |
text_pages = []
|
20 |
for image in images:
|
21 |
+
# Bilder werden für die OCR-Prozesse vorbereitet
|
22 |
inputs = self.processor(images=image, return_tensors="pt")
|
23 |
+
# Modell wird zur Textextraktion genutzt
|
24 |
+
outputs = self.model(**inputs)
|
25 |
+
# Hier wird der dekodierte Text extrahiert
|
26 |
+
text = self.processor.batch_decode(outputs.logits, skip_special_tokens=True)[0]
|
27 |
text_pages.append(text)
|
28 |
return text_pages
|
29 |
|