File size: 3,676 Bytes
3981ed2 5f4691e ae519a4 3981ed2 ae519a4 5f4691e 2c3da68 ae519a4 5f4691e ae519a4 3981ed2 ae519a4 3981ed2 ae519a4 5f4691e ae519a4 5f4691e ae519a4 2c3da68 5f4691e ae519a4 5f4691e 2c3da68 5f4691e 2c3da68 5f4691e ae519a4 5f4691e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
import os
os.environ["CUDA_VISIBLE_DEVICES"] = ""
import gradio as gr
#from unsloth import FastLanguageModel
from transformers import TextIteratorStreamer, AutoModelForCausalLM, AutoTokenizer
from threading import Thread
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
# client = InferenceClient()
class MyModel:
def __init__(self):
self.client = None
self.current_model = ""
self.tokenizer = None
def respond(
self,
message,
history: list[tuple[str, str]],
model,
system_message,
max_tokens,
temperature,
min_p,
):
if model != self.current_model or self.current_model is None:
# client, tokenizer = FastLanguageModel.from_pretrained(
# model_name = model,
# max_seq_length = 2048,
# dtype = None,
# load_in_4bit = True,
# )
# FastLanguageModel.for_inference(client) # Enable native 2x faster inference
tokenizer = AutoTokenizer.from_pretrained(model)
client = AutoModelForCausalLM.from_pretrained(model)
self.client = client
self.tokenizer = tokenizer
self.current_model = model
text_streamer = TextIteratorStreamer(self.tokenizer, skip_prompt = True)
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
inputs = self.tokenizer.apply_chat_template(
messages,
tokenize = True,
add_generation_prompt = True, # Must add for generation
return_tensors = "pt",
)
generation_kwargs = dict(input_ids=inputs, streamer=text_streamer, max_new_tokens=max_tokens, use_cache=True, temperature=temperature, min_p=min_p)
thread = Thread(target=self.client.generate, kwargs=generation_kwargs)
thread.start()
response = ""
for new_text in text_streamer:
response += new_text
yield response.strip("<|eot_id|>")
# for message in client.chat_completion(
# messages,
# max_tokens=max_tokens,
# stream=True,
# temperature=temperature,
# top_p=top_p,
# model=model,
# ):
# token = message.choices[0].delta.content
# response += token
# yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
my_model = MyModel()
model_choices = [
"lab2-as/lora_model_gguf",
"lab2-as/lora_model",
]
demo = gr.ChatInterface(
my_model.respond,
additional_inputs=[
gr.Dropdown(choices=model_choices, value=model_choices[0], label="Select Model"),
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=128, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Min-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()
|