lamdao's picture
Update app.py
9458bb1 verified
import gradio as gr
import requests
import json
from huggingface_hub import InferenceClient
API_TOKEN = "your_huggingface_api_token" # Replace with your actual token
API_URL = "https://api-inference.huggingface.co/models/InterSync/Mistral-7B-Instruct-v0.2-Function-Calling"
headers = {"Authorization": f"Bearer {API_TOKEN}"}
def get_weather(location: str, unit: str = "celsius"):
# Replace with your actual weather API call
pass
def get_weather_schema():
return {
"name": "get_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {"type": "string", "description": "The city and state, or zip code"},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"], "description": "Unit of temperature"}
},
"required": ["location"]
}
}
def query_model(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
with gr.Blocks() as demo:
gr.Markdown("# Mistral-7B-Instruct Function Calling Demo")
with gr.Row():
with gr.Column(scale=4):
input_text = gr.Textbox(label="Enter your text", lines=5)
submit_btn = gr.Button("Submit")
with gr.Column(scale=6):
output_text = gr.Textbox(label="Model Output", lines=10)
def user(user_message, history):
return "", history + [[user_message, None]] # Add user message to chat history
def bot(history):
if history:
user_message = history[-1][0]
payload = {
"inputs": user_message,
"parameters": {"function_call": "auto"}
}
output = query_model(payload)
else:
return history # Or some default response if history is empty
# Parse the model's response
if 'function_call' in output and 'name' in output['function_call']:
function_name = output['function_call']['name']
arguments = output['function_call'].get('arguments', {})
if function_name == "get_weather" and arguments:
weather_info = get_weather(**arguments)
response_message = f"The weather in {arguments['location']} is {weather_info['description']} with a temperature of {weather_info['temperature']} {weather_info['unit']}."
else:
response_message = "Function not found or invalid arguments."
else:
response_message = output[0]['generated_text']
history[-1][1] = response_message
return history
input_text.change(user, [input_text, output_text], [input_text, output_text], queue=False).then(
bot, [output_text], [output_text]
)
submit_btn.click(user, [input_text, output_text], [input_text, output_text], queue=False).then(
bot, [output_text], [output_text]
)
demo.queue().launch()
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()
"""