Spaces:
Runtime error
Runtime error
import torch | |
import math | |
import triton | |
import triton.language as tl | |
# We don't run auto-tuning every time to keep the tutorial fast. Uncommenting | |
# the code below and commenting out the equivalent parameters is convenient for | |
# re-tuning. | |
#@triton.autotune( | |
# configs=[ | |
# triton.Config({'BLOCK_M': 128, 'BLOCK_N': 64}, num_stages=4, num_warps=8), | |
# triton.Config({'BLOCK_M': 256, 'BLOCK_N': 64}, num_stages=3, num_warps=8), | |
# triton.Config({'BLOCK_M': 256, 'BLOCK_N': 32}, num_stages=3, num_warps=8), | |
# triton.Config({'BLOCK_M': 256, 'BLOCK_N': 32}, num_stages=3, num_warps=4), | |
# triton.Config({'BLOCK_M': 128, 'BLOCK_N': 32}, num_stages=3, num_warps=4), | |
# triton.Config({'BLOCK_M': 128, 'BLOCK_N': 32}, num_stages=4, num_warps=4), | |
# triton.Config({'BLOCK_M': 128, 'BLOCK_N': 64}, num_stages=3, num_warps=4), | |
# triton.Config({'BLOCK_M': 128, 'BLOCK_N': 64}, num_stages=4, num_warps=4), | |
# triton.Config({'BLOCK_M': 128, 'BLOCK_N': 64}, num_stages=3, num_warps=8), | |
# triton.Config({'BLOCK_M': 128, 'BLOCK_N': 64}, num_stages=7, num_warps=8), | |
# triton.Config({'BLOCK_M': 128, 'BLOCK_N': 32}, num_stages=7, num_warps=8), | |
# triton.Config({'BLOCK_M': 128, 'BLOCK_N': 32}, num_stages=6, num_warps=8), | |
# triton.Config({'BLOCK_M': 128, 'BLOCK_N': 32}, num_stages=5, num_warps=8), | |
# triton.Config({'BLOCK_M': 128, 'BLOCK_N': 32}, num_stages=4, num_warps=8), | |
# triton.Config({'BLOCK_M': 128, 'BLOCK_N': 64}, num_stages=6, num_warps=4), | |
# ], | |
# key=['N_CTX'], | |
#) | |
def _attn_fwd_prefill(Q1, K1, Q2, K2, V, sm_scale, M, Out, # | |
stride_qz, stride_qh, stride_qm, stride_qk, # | |
stride_kz, stride_kh, stride_kn, stride_kk, # | |
stride_vz, stride_vh, stride_vk, stride_vn, # | |
stride_oz, stride_oh, stride_om, stride_on, # | |
Z, H, # | |
Q_CTX: tl.constexpr, # | |
N_CTX: tl.constexpr, # | |
WINDOW: tl.constexpr, # | |
BLOCK_M: tl.constexpr, # | |
BLOCK_DMODEL: tl.constexpr, # | |
BLOCK_N: tl.constexpr, # | |
): | |
start_m = tl.program_id(0) | |
off_hz = tl.program_id(1) | |
off_z = off_hz // H | |
off_h = off_hz % H | |
qvk_offset = off_z.to(tl.int64) * stride_qz + off_h.to(tl.int64) * stride_qh | |
# block pointers | |
Q1_block_ptr = tl.make_block_ptr( | |
base=Q1 + qvk_offset, | |
shape=(Q_CTX, BLOCK_DMODEL), | |
strides=(stride_qm, stride_qk), | |
offsets=(start_m * BLOCK_M, 0), | |
block_shape=(BLOCK_M, BLOCK_DMODEL), | |
order=(1, 0), | |
) | |
Q2_block_ptr = tl.make_block_ptr( | |
base=Q2 + qvk_offset, | |
shape=(Q_CTX, BLOCK_DMODEL), | |
strides=(stride_qm, stride_qk), | |
offsets=(start_m * BLOCK_M, 0), | |
block_shape=(BLOCK_M, BLOCK_DMODEL), | |
order=(1, 0), | |
) | |
V_block_ptr = tl.make_block_ptr( | |
base=V + qvk_offset, | |
shape=(N_CTX, BLOCK_DMODEL), | |
strides=(stride_vk, stride_vn), | |
offsets=(0, 0), | |
block_shape=(BLOCK_N, BLOCK_DMODEL), | |
order=(1, 0), | |
) | |
K1_block_ptr = tl.make_block_ptr( | |
base=K1 + qvk_offset, | |
shape=(BLOCK_DMODEL, N_CTX), | |
strides=(stride_kk, stride_kn), | |
offsets=(0, 0), | |
block_shape=(BLOCK_DMODEL, BLOCK_N), | |
order=(0, 1), | |
) | |
K2_block_ptr = tl.make_block_ptr( | |
base=K2 + qvk_offset, | |
shape=(BLOCK_DMODEL, N_CTX), | |
strides=(stride_kk, stride_kn), | |
offsets=(0, 0), | |
block_shape=(BLOCK_DMODEL, BLOCK_N), | |
order=(0, 1), | |
) | |
O_block_ptr = tl.make_block_ptr( | |
base=Out + qvk_offset, | |
shape=(Q_CTX, BLOCK_DMODEL), | |
strides=(stride_om, stride_on), | |
offsets=(start_m * BLOCK_M, 0), | |
block_shape=(BLOCK_M, BLOCK_DMODEL), | |
order=(1, 0), | |
) | |
# initialize offsets | |
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) | |
offs_n = tl.arange(0, BLOCK_N) | |
# initialize pointer to m and l | |
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf") | |
l_i = tl.zeros([BLOCK_M], dtype=tl.float32) + 1.0 | |
acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32) | |
# load scales | |
qk_scale = sm_scale | |
qk_scale *= 1.442695040888963#1.44269504 # 1/log(2) | |
# load q: it will stay in SRAM throughout | |
#q = tl.load(Q_block_ptr) | |
if start_m * BLOCK_M + BLOCK_M > Q_CTX: | |
q1 = tl.load(Q1_block_ptr, boundary_check=(0,), padding_option='zero') | |
q2 = tl.load(Q2_block_ptr, boundary_check=(0,), padding_option='zero') | |
else: | |
q1 = tl.load(Q1_block_ptr) | |
q2 = tl.load(Q2_block_ptr) | |
#q1 = (q1 * qk_scale).to(tl.float16) | |
#q2 = (q2 * qk_scale).to(tl.float16) | |
lo = 0 | |
hi = (start_m + 1) * BLOCK_M | |
# loop over k, v and update accumulator | |
for start_n in range(lo, hi, BLOCK_N): | |
start_n = tl.multiple_of(start_n, BLOCK_N) | |
#qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) #? | |
#qk = qk.to(tl.float16) | |
# if use condition, qk has to be float32, then convert to float16... | |
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) | |
if start_n + BLOCK_N - 1 > start_m * BLOCK_M - 1: | |
qk += tl.where(offs_m[:, None] >= (start_n + offs_n[None, :]), 0, -1.0e6)#float("-inf")) | |
#qk = tl.where(offs_m[:, None] >= (start_n + offs_n[None, :]), qk, float("-inf")) | |
# -- compute qk ---- | |
#k = tl.load(K_block_ptr) | |
# case 1: only need group attention: q2, k2 | |
if BLOCK_N + start_n <= (start_m * BLOCK_M - WINDOW + 1): | |
if BLOCK_N + start_n >= N_CTX: | |
k2 = tl.load(K2_block_ptr, boundary_check=(1,), padding_option='zero') | |
v = tl.load(V_block_ptr, boundary_check=(0,), padding_option='zero') | |
else: | |
k2 = tl.load(K2_block_ptr) | |
v = tl.load(V_block_ptr) | |
#qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) | |
#qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float16) | |
qk += tl.dot(q2, k2)#, out_dtype=tl.float16) | |
else: | |
#case 2: only need neighbor attention: q1, k1 | |
if start_n >= (start_m+1) * BLOCK_M - WINDOW: | |
if BLOCK_N + start_n >= N_CTX: | |
k1 = tl.load(K1_block_ptr, boundary_check=(1,), padding_option='zero') | |
v = tl.load(V_block_ptr, boundary_check=(0,), padding_option='zero') | |
else: | |
k1 = tl.load(K1_block_ptr) | |
v = tl.load(V_block_ptr) | |
#qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) | |
#qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float16) | |
qk += tl.dot(q1, k1)#, out_dtype=tl.float16) | |
else: | |
#case 3: need both q1, k1 and q2, k2 | |
if BLOCK_N + start_n >= N_CTX: | |
k1 = tl.load(K1_block_ptr, boundary_check=(1,), padding_option='zero') | |
k2 = tl.load(K2_block_ptr, boundary_check=(1,), padding_option='zero') | |
v = tl.load(V_block_ptr, boundary_check=(0,), padding_option='zero') | |
else: | |
k1 = tl.load(K1_block_ptr) | |
k2 = tl.load(K2_block_ptr) | |
v = tl.load(V_block_ptr) | |
#qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) | |
#qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float16) | |
qk1 = tl.dot(q1, k1)#, out_dtype=tl.float16) | |
qk2 = tl.dot(q2, k2)#, out_dtype=tl.float16) | |
#merge_mask = tl.abs((offs_m[:, None] - (start_n + offs_n[None, :]))) >= WINDOW | |
#qk += tl.where(merge_mask, qk2, qk1) | |
qk += tl.where(tl.abs(offs_m[:, None] - (start_n + offs_n[None, :])) < WINDOW, qk1, qk2) | |
qk *= qk_scale | |
m_ij = tl.maximum(m_i, tl.max(qk, 1)) | |
qk = qk - m_ij[:, None] | |
p = tl.math.exp2(qk) | |
l_ij = tl.sum(p, 1) | |
# -- update m_i and l_i | |
alpha = tl.math.exp2(m_i - m_ij) | |
l_i = l_i * alpha + l_ij | |
# -- update output accumulator -- | |
acc = acc * alpha[:, None] | |
# update acc | |
#v = tl.load(V_block_ptr) | |
#v = tl.load(V_block_ptr, boundary_check=(0,), padding_option='zero') | |
acc += tl.dot(p.to(tl.float16), v) | |
# update m_i and l_i | |
m_i = m_ij | |
V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0)) | |
K1_block_ptr = tl.advance(K1_block_ptr, (0, BLOCK_N)) | |
K2_block_ptr = tl.advance(K2_block_ptr, (0, BLOCK_N)) | |
# epilogue | |
m_i += tl.math.log2(l_i) | |
acc = acc / l_i[:, None] | |
m_ptrs = M + off_hz * Q_CTX + offs_m | |
if start_m * BLOCK_M + BLOCK_M >= Q_CTX: | |
tl.store(m_ptrs, m_i, mask=offs_m < Q_CTX) | |
tl.store(O_block_ptr, acc.to(Out.type.element_ty), boundary_check=(0,)) | |
else: | |
tl.store(m_ptrs, m_i) | |
tl.store(O_block_ptr, acc.to(Out.type.element_ty)) | |
def prefill_flash_forward(q1, k1, q2, k2, v, q_len, seq_len, window, sm_scale=None): | |
# shape constraints | |
Lq, Lk, Lv = q1.shape[-1], k1.shape[-1], v.shape[-1] | |
assert Lq == Lk and Lk == Lv | |
assert Lk in {16, 32, 64, 128} | |
assert q_len == seq_len or q_len == 1 | |
if sm_scale is None: | |
sm_scale = 1.0 / math.sqrt(Lq) # the default scale factor. | |
o = torch.empty_like(q1, device=q1.device) | |
block_m = 128 | |
block_n = 64 # if Lk <= 64 else 32 | |
num_stages = 4 if Lk <= 64 else 3 | |
num_warps = 4 | |
# Tuning for H100 | |
if torch.cuda.get_device_capability()[0] == 9: | |
num_warps = 8 | |
num_stages = 7 if Lk >= 64 else 3 | |
grid = (triton.cdiv(q1.shape[2], block_m), q1.shape[0] * q1.shape[1], 1) | |
M = torch.empty((q1.shape[0], q1.shape[1], q1.shape[2]), device=q1.device, dtype=torch.float32) | |
with torch.cuda.device(v.device.index): | |
# https://github.com/Dao-AILab/flash-attention/commit/9795159082f6e6c847db2bf4284fd17326c31fbd | |
# to avoid the device issue . | |
_attn_fwd_prefill[grid]( | |
q1, k1, q2, k2, v, sm_scale, M, o, # | |
q1.stride(0), q1.stride(1), q1.stride(2), q1.stride(3), # | |
k1.stride(0), k1.stride(1), k1.stride(2), k1.stride(3), # | |
v.stride(0), v.stride(1), v.stride(2), v.stride(3), # | |
o.stride(0), o.stride(1), o.stride(2), o.stride(3), # | |
q1.shape[0], q1.shape[1], # | |
Q_CTX=q_len, | |
N_CTX=seq_len, # | |
BLOCK_M=block_m, # | |
BLOCK_N=block_n, # | |
WINDOW=window, | |
BLOCK_DMODEL=Lk, # | |
num_warps=num_warps, # | |
num_stages=num_stages # | |
) | |
return o | |