Spaces:
Running
Running
File size: 20,635 Bytes
422dfa9 e8f9d10 716eebd e8f9d10 9604bdd e8f9d10 ddd02b3 e8f9d10 aaf7e4c e8f9d10 716eebd e8f9d10 65c747d e8f9d10 65c747d e8f9d10 de24ee4 e8f9d10 65c747d 422dfa9 e8f9d10 716eebd e8f9d10 65c747d e8f9d10 65c747d e8f9d10 9604bdd b6efbf5 e8f9d10 716eebd e8f9d10 65c747d e8f9d10 65c747d e8f9d10 24dd113 65c747d 24dd113 e8f9d10 de24ee4 e8f9d10 65c747d 716eebd 65c747d e8f9d10 ddd02b3 716eebd ddd02b3 716eebd ddd02b3 e8f9d10 b6efbf5 716eebd e8f9d10 65c747d 716eebd b6efbf5 e8f9d10 716eebd e8f9d10 65c747d e8f9d10 9604bdd 716eebd 65c747d e8f9d10 65c747d e8f9d10 716eebd e8f9d10 716eebd 65c747d b6efbf5 65c747d b6efbf5 65c747d f9ce04f 65c747d 073aa83 65c747d 422dfa9 9604bdd e8f9d10 716eebd 65c747d 9604bdd 65c747d 716eebd 65c747d e8f9d10 65c747d e8f9d10 b6efbf5 e8f9d10 716eebd e8f9d10 65c747d e8f9d10 65c747d 9604bdd 65c747d e8f9d10 65c747d e8f9d10 b6efbf5 716eebd b6efbf5 9604bdd b6efbf5 e8f9d10 422dfa9 9604bdd 422dfa9 9604bdd 422dfa9 716eebd e8f9d10 716eebd e8f9d10 b6efbf5 716eebd b6efbf5 716eebd e8f9d10 716eebd e8f9d10 9604bdd e8f9d10 716eebd 422dfa9 716eebd e8f9d10 ddd02b3 9604bdd e8f9d10 65c747d b6efbf5 65c747d e8f9d10 9604bdd e8f9d10 716eebd 422dfa9 716eebd e8f9d10 716eebd b6efbf5 9604bdd b6efbf5 716eebd 9604bdd 716eebd e8f9d10 716eebd e8f9d10 65c747d b6efbf5 65c747d e8f9d10 9604bdd e8f9d10 716eebd e8f9d10 ddd02b3 b6efbf5 422dfa9 b6efbf5 422dfa9 9604bdd 716eebd 422dfa9 716eebd b6efbf5 422dfa9 b6efbf5 9604bdd e8f9d10 9604bdd e8f9d10 716eebd b6efbf5 422dfa9 716eebd e8f9d10 ddd02b3 b6efbf5 073aa83 716eebd 9604bdd 65c747d 716eebd 65c747d e8f9d10 b6efbf5 073aa83 e8f9d10 65c747d 073aa83 e8f9d10 073aa83 716eebd 422dfa9 716eebd 073aa83 b6efbf5 073aa83 e8f9d10 716eebd 422dfa9 716eebd 422dfa9 e8f9d10 65c747d e8f9d10 65c747d e8f9d10 716eebd 422dfa9 716eebd e8f9d10 65c747d 716eebd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 |
# filename: service.py
from __future__ import annotations
import asyncio
import logging
import threading
from enum import Enum
from typing import List, Union, Dict, Optional, NamedTuple, Any
from dataclasses import dataclass
from pathlib import Path
from io import BytesIO
from hashlib import md5
from cachetools import LRUCache
import httpx
import numpy as np
import torch
from PIL import Image
from sentence_transformers import SentenceTransformer
from transformers import AutoProcessor, AutoModel
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
class TextModelType(str, Enum):
"""
Enumeration of supported text models.
"""
MULTILINGUAL_E5_SMALL = "multilingual-e5-small"
MULTILINGUAL_E5_BASE = "multilingual-e5-base"
MULTILINGUAL_E5_LARGE = "multilingual-e5-large"
SNOWFLAKE_ARCTIC_EMBED_L_V2 = "snowflake-arctic-embed-l-v2.0"
PARAPHRASE_MULTILINGUAL_MINILM_L12_V2 = "paraphrase-multilingual-MiniLM-L12-v2"
PARAPHRASE_MULTILINGUAL_MPNET_BASE_V2 = "paraphrase-multilingual-mpnet-base-v2"
BGE_M3 = "bge-m3"
GTE_MULTILINGUAL_BASE = "gte-multilingual-base"
class ImageModelType(str, Enum):
"""
Enumeration of supported image models.
"""
SIGLIP_BASE_PATCH16_256_MULTILINGUAL = "siglip-base-patch16-256-multilingual"
class MaxModelLength(str, Enum):
"""
Enumeration of maximum token lengths for supported text models.
"""
MULTILINGUAL_E5_SMALL = 512
MULTILINGUAL_E5_BASE = 512
MULTILINGUAL_E5_LARGE = 512
SNOWFLAKE_ARCTIC_EMBED_L_V2 = 8192
PARAPHRASE_MULTILINGUAL_MINILM_L12_V2 = 128
PARAPHRASE_MULTILINGUAL_MPNET_BASE_V2 = 128
BGE_M3 = 8192
GTE_MULTILINGUAL_BASE = 8192
class ModelInfo(NamedTuple):
"""
Container mapping a model type to its model identifier and optional ONNX file.
"""
model_id: str
onnx_file: Optional[str] = None
@dataclass
class ModelConfig:
"""
Configuration for text and image models.
"""
text_model_type: TextModelType = TextModelType.MULTILINGUAL_E5_SMALL
image_model_type: ImageModelType = ImageModelType.SIGLIP_BASE_PATCH16_256_MULTILINGUAL
logit_scale: float = 4.60517 # Example scale used in cross-modal similarity
@property
def text_model_info(self) -> ModelInfo:
"""
Return model information for the configured text model.
"""
text_configs = {
TextModelType.MULTILINGUAL_E5_SMALL: ModelInfo(
model_id="Xenova/multilingual-e5-small",
onnx_file="onnx/model_quantized.onnx",
),
TextModelType.MULTILINGUAL_E5_BASE: ModelInfo(
model_id="Xenova/multilingual-e5-base",
onnx_file="onnx/model_quantized.onnx",
),
TextModelType.MULTILINGUAL_E5_LARGE: ModelInfo(
model_id="Xenova/multilingual-e5-large",
onnx_file="onnx/model_quantized.onnx",
),
TextModelType.SNOWFLAKE_ARCTIC_EMBED_L_V2: ModelInfo(
model_id="Snowflake/snowflake-arctic-embed-l-v2.0",
onnx_file="onnx/model_quantized.onnx",
),
TextModelType.PARAPHRASE_MULTILINGUAL_MINILM_L12_V2: ModelInfo(
model_id="Xenova/paraphrase-multilingual-MiniLM-L12-v2",
onnx_file="onnx/model_quantized.onnx",
),
TextModelType.PARAPHRASE_MULTILINGUAL_MPNET_BASE_V2: ModelInfo(
model_id="Xenova/paraphrase-multilingual-mpnet-base-v2",
onnx_file="onnx/model_quantized.onnx",
),
TextModelType.BGE_M3: ModelInfo(
model_id="Xenova/bge-m3",
onnx_file="onnx/model_quantized.onnx",
),
TextModelType.GTE_MULTILINGUAL_BASE: ModelInfo(
model_id="onnx-community/gte-multilingual-base",
onnx_file="onnx/model_quantized.onnx",
),
}
return text_configs[self.text_model_type]
@property
def image_model_info(self) -> ModelInfo:
"""
Return model information for the configured image model.
"""
image_configs = {
ImageModelType.SIGLIP_BASE_PATCH16_256_MULTILINGUAL: ModelInfo(
model_id="google/siglip-base-patch16-256-multilingual"
),
}
return image_configs[self.image_model_type]
class ModelKind(str, Enum):
"""
Indicates the type of model: text or image.
"""
TEXT = "text"
IMAGE = "image"
def detect_model_kind(model_id: str) -> ModelKind:
"""
Detect whether the model identifier corresponds to a text or image model.
Raises:
ValueError: If the model identifier is unrecognized.
"""
if model_id in [m.value for m in TextModelType]:
return ModelKind.TEXT
elif model_id in [m.value for m in ImageModelType]:
return ModelKind.IMAGE
else:
raise ValueError(
f"Unrecognized model ID: {model_id}.\n"
f"Valid text: {[m.value for m in TextModelType]}\n"
f"Valid image: {[m.value for m in ImageModelType]}"
)
class EmbeddingsService:
"""
Service for generating text/image embeddings and performing similarity ranking.
Asynchronous methods are used to maximize throughput and avoid blocking the event loop.
"""
def __init__(self, config: Optional[ModelConfig] = None):
"""
Initialize the service by setting up model caches, device configuration,
and asynchronous HTTP client.
"""
self.lru_cache = LRUCache(maxsize=10_000)
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.config = config or ModelConfig()
# Dictionaries to hold preloaded models.
self.text_models: Dict[TextModelType, SentenceTransformer] = {}
self.image_models: Dict[ImageModelType, AutoModel] = {}
self.image_processors: Dict[ImageModelType, AutoProcessor] = {}
# Create reentrant locks for each text model to ensure thread safety.
self.text_model_locks: Dict[TextModelType, threading.RLock] = {
t: threading.RLock() for t in TextModelType
}
# Create a persistent asynchronous HTTP client.
self.async_http_client = httpx.AsyncClient(timeout=10)
# Preload all models.
self._load_all_models()
def _load_all_models(self) -> None:
"""
Pre-load all text and image models to minimize latency at request time.
"""
try:
# Preload text models.
for t_model_type in TextModelType:
info = ModelConfig(text_model_type=t_model_type).text_model_info
logger.info("Loading text model: %s", info.model_id)
if info.onnx_file:
logger.info("Using ONNX file: %s", info.onnx_file)
self.text_models[t_model_type] = SentenceTransformer(
info.model_id,
device=self.device,
backend="onnx",
model_kwargs={
"provider": "CPUExecutionProvider",
"file_name": info.onnx_file,
},
trust_remote_code=True,
)
else:
self.text_models[t_model_type] = SentenceTransformer(
info.model_id,
device=self.device,
trust_remote_code=True,
)
# Set maximum sequence length based on configuration.
max_length = int(MaxModelLength[t_model_type.name].value)
self.text_models[t_model_type].max_seq_length = max_length
logger.info("Set max_seq_length=%d for text model: %s", max_length, info.model_id)
# Preload image models.
for i_model_type in ImageModelType:
model_id = ModelConfig(image_model_type=i_model_type).image_model_info.model_id
logger.info("Loading image model: %s", model_id)
model = AutoModel.from_pretrained(model_id).to(self.device)
model.eval() # Set the model to evaluation mode.
processor = AutoProcessor.from_pretrained(model_id)
self.image_models[i_model_type] = model
self.image_processors[i_model_type] = processor
logger.info("All models loaded successfully.")
except Exception as e:
msg = f"Error loading models: {str(e)}"
logger.error(msg)
raise RuntimeError(msg) from e
@staticmethod
def _validate_text_list(input_text: Union[str, List[str]]) -> List[str]:
"""
Validate and convert text input into a non-empty list of strings.
Raises:
ValueError: If the input is invalid.
"""
if isinstance(input_text, str):
if not input_text.strip():
raise ValueError("Text input cannot be empty.")
return [input_text]
if not isinstance(input_text, list) or not all(isinstance(x, str) for x in input_text):
raise ValueError("Text input must be a string or a list of strings.")
if len(input_text) == 0:
raise ValueError("Text input list cannot be empty.")
return input_text
@staticmethod
def _validate_image_list(input_images: Union[str, List[str]]) -> List[str]:
"""
Validate and convert image input into a non-empty list of image paths/URLs.
Raises:
ValueError: If the input is invalid.
"""
if isinstance(input_images, str):
if not input_images.strip():
raise ValueError("Image input cannot be empty.")
return [input_images]
if not isinstance(input_images, list) or not all(isinstance(x, str) for x in input_images):
raise ValueError("Image input must be a string or a list of strings.")
if len(input_images) == 0:
raise ValueError("Image input list cannot be empty.")
return input_images
def _truncate_text(self, text: str, model: SentenceTransformer) -> str:
"""
Truncate the input text to the maximum allowed tokens for the given model.
Args:
text: The input text.
model: The SentenceTransformer model used for tokenization.
Returns:
The truncated text if token length exceeds the maximum allowed length,
otherwise the original text.
"""
try:
# Attempt to get the tokenizer from the first module of the SentenceTransformer.
module = model._first_module()
if not hasattr(module, 'tokenizer'):
return text
tokenizer = module.tokenizer
# Tokenize without truncation.
encoded = tokenizer(text, add_special_tokens=True, truncation=False)
max_length = model.max_seq_length
if len(encoded['input_ids']) > max_length:
truncated_ids = encoded['input_ids'][:max_length]
truncated_text = tokenizer.decode(truncated_ids, skip_special_tokens=True)
return truncated_text
except Exception as e:
logger.warning("Error during text truncation: %s", str(e))
return text
async def _fetch_image(self, path_or_url: str) -> Image.Image:
"""
Asynchronously fetch an image from a URL or load from a local path.
Args:
path_or_url: The URL or file path of the image.
Returns:
A PIL Image in RGB mode.
Raises:
ValueError: If image fetching or processing fails.
"""
try:
if path_or_url.startswith("http"):
# Asynchronously fetch the image bytes.
response = await self.async_http_client.get(path_or_url)
response.raise_for_status()
# Offload the blocking I/O (PIL image opening) to a thread.
img = await asyncio.to_thread(Image.open, BytesIO(response.content))
else:
# Offload file I/O to a thread.
img = await asyncio.to_thread(Image.open, Path(path_or_url))
return img.convert("RGB")
except Exception as e:
raise ValueError(f"Error fetching image '{path_or_url}': {str(e)}") from e
async def _process_image(self, path_or_url: str) -> Dict[str, torch.Tensor]:
"""
Asynchronously load and process a single image.
Args:
path_or_url: The image URL or local path.
Returns:
A dictionary of processed tensors ready for model input.
Raises:
ValueError: If image processing fails.
"""
img = await self._fetch_image(path_or_url)
processor = self.image_processors[self.config.image_model_type]
# Note: Processor may perform CPU-intensive work; if needed, offload to thread.
processed_data = processor(images=img, return_tensors="pt").to(self.device)
return processed_data
def _generate_text_embeddings(self, model_id: TextModelType, texts: List[str]) -> np.ndarray:
"""
Generate text embeddings using the SentenceTransformer model.
Single-text requests are cached using an LRU cache.
Args:
model_id: The text model type.
texts: A list of input texts.
Returns:
A NumPy array of text embeddings.
Raises:
RuntimeError: If text embedding generation fails.
"""
try:
model = self.text_models[model_id]
lock = self.text_model_locks[model_id]
with lock:
if len(texts) == 1:
single_text = texts[0]
key = md5(f"{model_id}:{single_text}".encode("utf-8")).hexdigest()[:8]
if key in self.lru_cache:
return self.lru_cache[key]
emb = model.encode([single_text])
self.lru_cache[key] = emb
return emb
return model.encode(texts)
except Exception as e:
raise RuntimeError(
f"Error generating text embeddings with model '{model_id}': {e}"
) from e
async def _async_generate_image_embeddings(self, model_id: ImageModelType, images: List[str]) -> np.ndarray:
"""
Asynchronously generate image embeddings.
This method concurrently processes multiple images and offloads
the blocking model inference to a separate thread.
Args:
model_id: The image model type.
images: A list of image URLs or file paths.
Returns:
A NumPy array of image embeddings.
Raises:
RuntimeError: If image embedding generation fails.
"""
try:
# Concurrently process all images.
processed_tensors = await asyncio.gather(
*[self._process_image(img_path) for img_path in images]
)
# Assume all processed outputs have the same keys.
keys = processed_tensors[0].keys()
combined = {k: torch.cat([pt[k] for pt in processed_tensors], dim=0) for k in keys}
def infer():
with torch.no_grad():
embeddings = self.image_models[model_id].get_image_features(**combined)
return embeddings.cpu().numpy()
return await asyncio.to_thread(infer)
except Exception as e:
raise RuntimeError(
f"Error generating image embeddings with model '{model_id}': {e}"
) from e
async def generate_embeddings(self, model: str, inputs: Union[str, List[str]]) -> np.ndarray:
"""
Asynchronously generate embeddings for text or image inputs based on model type.
Args:
model: The model identifier.
inputs: The text or image input(s).
Returns:
A NumPy array of embeddings.
"""
modality = detect_model_kind(model)
if modality == ModelKind.TEXT:
text_model_enum = TextModelType(model)
text_list = self._validate_text_list(inputs)
model_instance = self.text_models[text_model_enum]
lock = self.text_model_locks[text_model_enum]
with lock:
# Truncate each text if it exceeds the maximum allowed token length.
truncated_texts = [self._truncate_text(text, model_instance) for text in text_list]
return await asyncio.to_thread(
self._generate_text_embeddings, text_model_enum, truncated_texts
)
elif modality == ModelKind.IMAGE:
image_model_enum = ImageModelType(model)
image_list = self._validate_image_list(inputs)
return await self._async_generate_image_embeddings(image_model_enum, image_list)
async def rank(self, model: str, queries: Union[str, List[str]], candidates: Union[str, List[str]]) -> Dict[str, Any]:
"""
Asynchronously rank candidate texts/images against the provided queries.
Embeddings for queries and candidates are generated concurrently.
Args:
model: The model identifier.
queries: The query input(s).
candidates: The candidate input(s).
Returns:
A dictionary containing probabilities, cosine similarities, and usage statistics.
"""
modality = detect_model_kind(model)
if modality == ModelKind.TEXT:
model_enum = TextModelType(model)
else:
model_enum = ImageModelType(model)
# Concurrently generate embeddings.
query_task = asyncio.create_task(self.generate_embeddings(model, queries))
candidate_task = asyncio.create_task(self.generate_embeddings(model, candidates))
query_embeds, candidate_embeds = await asyncio.gather(query_task, candidate_task)
# Compute cosine similarity.
sim_matrix = self.cosine_similarity(query_embeds, candidate_embeds)
scaled = np.exp(self.config.logit_scale) * sim_matrix
probs = self.softmax(scaled)
if modality == ModelKind.TEXT:
query_tokens = self.estimate_tokens(queries)
candidate_tokens = self.estimate_tokens(candidates)
total_tokens = query_tokens + candidate_tokens
else:
total_tokens = 0
usage = {
"prompt_tokens": total_tokens,
"total_tokens": total_tokens,
}
return {
"probabilities": probs.tolist(),
"cosine_similarities": sim_matrix.tolist(),
"usage": usage,
}
def estimate_tokens(self, input_data: Union[str, List[str]]) -> int:
"""
Estimate the token count for the given text input using the SentenceTransformer tokenizer.
Args:
input_data: The text input(s).
Returns:
The total number of tokens.
"""
texts = self._validate_text_list(input_data)
model = self.text_models[self.config.text_model_type]
tokenized = model.tokenize(texts)
return sum(len(ids) for ids in tokenized["input_ids"])
@staticmethod
def softmax(scores: np.ndarray) -> np.ndarray:
"""
Compute the softmax over the last dimension of the input array.
Args:
scores: A NumPy array of scores.
Returns:
A NumPy array of softmax probabilities.
"""
exps = np.exp(scores - np.max(scores, axis=-1, keepdims=True))
return exps / np.sum(exps, axis=-1, keepdims=True)
@staticmethod
def cosine_similarity(a: np.ndarray, b: np.ndarray) -> np.ndarray:
"""
Compute the pairwise cosine similarity between all rows of arrays a and b.
Args:
a: A NumPy array.
b: A NumPy array.
Returns:
A (N x M) matrix of cosine similarities.
"""
a_norm = a / (np.linalg.norm(a, axis=1, keepdims=True) + 1e-9)
b_norm = b / (np.linalg.norm(b, axis=1, keepdims=True) + 1e-9)
return np.dot(a_norm, b_norm.T)
async def close(self) -> None:
"""
Close the asynchronous HTTP client.
"""
await self.async_http_client.aclose()
|