lamhieu's picture
chore: update something
9001620
raw
history blame
8.1 kB
"""
FastAPI Router for Embeddings Service (Revised & Simplified)
Exposes the EmbeddingsService methods via a RESTful API.
Supported Text Model IDs:
- "multilingual-e5-small"
- "multilingual-e5-base"
- "multilingual-e5-large"
- "snowflake-arctic-embed-l-v2.0"
- "paraphrase-multilingual-MiniLM-L12-v2"
- "paraphrase-multilingual-mpnet-base-v2"
- "bge-m3"
- "gte-multilingual-base"
Supported Image Model IDs:
- "siglip-base-patch16-256-multilingual"
"""
from __future__ import annotations
import logging
import os
from typing import Dict, Any, List, Union
from enum import Enum
from datetime import datetime
from fastapi import APIRouter, BackgroundTasks, HTTPException
from pydantic import BaseModel, Field
from .analytics import Analytics
from .service import (
ModelConfig,
TextModelType,
ImageModelType,
EmbeddingsService,
)
logger = logging.getLogger(__name__)
router = APIRouter(
tags=["v1"],
responses={404: {"description": "Not found"}},
)
class ModelKind(str, Enum):
TEXT = "text"
IMAGE = "image"
def detect_model_kind(model_id: str) -> ModelKind:
"""
Detect whether model_id is for a text or an image model.
Raises ValueError if unrecognized.
"""
if model_id in [m.value for m in TextModelType]:
return ModelKind.TEXT
elif model_id in [m.value for m in ImageModelType]:
return ModelKind.IMAGE
else:
raise ValueError(
f"Unrecognized model ID: {model_id}.\n"
f"Valid text: {[m.value for m in TextModelType]}\n"
f"Valid image: {[m.value for m in ImageModelType]}"
)
class EmbeddingRequest(BaseModel):
"""
Input to /v1/embeddings
"""
model: str = Field(
default=TextModelType.MULTILINGUAL_E5_SMALL.value,
description=(
"Which model ID to use? "
"Text: ['multilingual-e5-small', 'multilingual-e5-base', 'multilingual-e5-large', 'snowflake-arctic-embed-l-v2.0', 'paraphrase-multilingual-MiniLM-L12-v2', 'paraphrase-multilingual-mpnet-base-v2', 'bge-m3']. "
"Image: ['siglip-base-patch16-256-multilingual']."
),
)
input: Union[str, List[str]] = Field(
..., description="Text(s) or Image URL(s)/path(s)."
)
class RankRequest(BaseModel):
"""
Input to /v1/rank
"""
model: str = Field(
default=TextModelType.MULTILINGUAL_E5_SMALL.value,
description=(
"Model ID for the queries. "
"Text or Image model, e.g. 'siglip-base-patch16-256-multilingual' for images."
),
)
queries: Union[str, List[str]] = Field(
..., description="Query text or image(s) depending on the model type."
)
candidates: List[str] = Field(
..., description="Candidate texts to rank. Must be text."
)
class EmbeddingResponse(BaseModel):
"""
Response of /v1/embeddings
"""
object: str
data: List[dict]
model: str
usage: dict
class RankResponse(BaseModel):
"""
Response of /v1/rank
"""
probabilities: List[List[float]]
cosine_similarities: List[List[float]]
class StatsBucket(BaseModel):
"""Helper model for daily/weekly/monthly/yearly stats"""
total: Dict[str, int]
daily: Dict[str, int]
weekly: Dict[str, int]
monthly: Dict[str, int]
yearly: Dict[str, int]
class StatsResponse(BaseModel):
"""Analytics stats response model, including both access and token counts"""
access: StatsBucket
tokens: StatsBucket
service_config = ModelConfig()
embeddings_service = EmbeddingsService(config=service_config)
analytics = Analytics(
redis_url=os.environ.get("REDIS_URL", "redis://localhost:6379/0"), sync_interval=60
)
@router.post("/embeddings", response_model=EmbeddingResponse, tags=["embeddings"])
async def create_embeddings(
request: EmbeddingRequest, background_tasks: BackgroundTasks
):
"""
Generates embeddings for the given input (text or image).
"""
try:
# 1) Determine if it's text or image
mkind = detect_model_kind(request.model)
# 2) Update global service config so it uses the correct model
if mkind == ModelKind.TEXT:
service_config.text_model_type = TextModelType(request.model)
else:
service_config.image_model_type = ImageModelType(request.model)
# 3) Generate
embeddings = await embeddings_service.generate_embeddings(
input_data=request.input, modality=mkind.value
)
# 4) Estimate tokens for text only
total_tokens = 0
if mkind == ModelKind.TEXT:
total_tokens = embeddings_service.estimate_tokens(request.input)
resp = {
"object": "list",
"data": [],
"model": request.model,
"usage": {
"prompt_tokens": total_tokens,
"total_tokens": total_tokens,
},
}
background_tasks.add_task(
analytics.access, request.model, resp["usage"]["total_tokens"]
)
for idx, emb in enumerate(embeddings):
resp["data"].append(
{
"object": "embedding",
"index": idx,
"embedding": emb.tolist(),
}
)
return resp
except Exception as e:
msg = (
"Failed to generate embeddings. Check model ID, inputs, etc.\n"
f"Details: {str(e)}"
)
logger.error(msg)
raise HTTPException(status_code=500, detail=msg)
@router.post("/rank", response_model=RankResponse, tags=["rank"])
async def rank_candidates(request: RankRequest, background_tasks: BackgroundTasks):
"""
Ranks candidate texts against the given queries (which can be text or image).
"""
try:
mkind = detect_model_kind(request.model)
if mkind == ModelKind.TEXT:
service_config.text_model_type = TextModelType(request.model)
else:
service_config.image_model_type = ImageModelType(request.model)
results = await embeddings_service.rank(
queries=request.queries,
candidates=request.candidates,
modality=mkind.value,
)
background_tasks.add_task(
analytics.access, request.model, results["usage"]["total_tokens"]
)
return results
except Exception as e:
msg = (
"Failed to rank candidates. Check model ID, inputs, etc.\n"
f"Details: {str(e)}"
)
logger.error(msg)
raise HTTPException(status_code=500, detail=msg)
@router.get("/stats", response_model=StatsResponse, tags=["stats"])
async def get_stats():
"""Get usage statistics for all models, including access and tokens."""
try:
day_key = datetime.utcnow().strftime("%Y-%m-%d")
week_key = f"{datetime.utcnow().year}-W{datetime.utcnow().strftime('%U')}"
month_key = datetime.utcnow().strftime("%Y-%m")
year_key = datetime.utcnow().strftime("%Y")
stats_data = await analytics.stats() # { "access": {...}, "tokens": {...} }
return {
"access": {
"total": stats_data["access"].get("total", {}),
"daily": stats_data["access"].get(day_key, {}),
"weekly": stats_data["access"].get(week_key, {}),
"monthly": stats_data["access"].get(month_key, {}),
"yearly": stats_data["access"].get(year_key, {}),
},
"tokens": {
"total": stats_data["tokens"].get("total", {}),
"daily": stats_data["tokens"].get(day_key, {}),
"weekly": stats_data["tokens"].get(week_key, {}),
"monthly": stats_data["tokens"].get(month_key, {}),
"yearly": stats_data["tokens"].get(year_key, {}),
},
}
except Exception as e:
msg = f"Failed to fetch analytics stats: {str(e)}"
logger.error(msg)
raise HTTPException(status_code=500, detail=msg)