Spaces:
Running
Running
""" | |
FastAPI Router for Embeddings Service (Revised & Simplified) | |
Exposes the EmbeddingsService methods via a RESTful API. | |
Supported Text Model IDs: | |
- "multilingual-e5-small" | |
- "multilingual-e5-base" | |
- "multilingual-e5-large" | |
- "snowflake-arctic-embed-l-v2.0" | |
- "paraphrase-multilingual-MiniLM-L12-v2" | |
- "paraphrase-multilingual-mpnet-base-v2" | |
- "bge-m3" | |
- "gte-multilingual-base" | |
Supported Image Model IDs: | |
- "siglip-base-patch16-256-multilingual" | |
""" | |
from __future__ import annotations | |
import logging | |
from typing import List, Union | |
from enum import Enum | |
from fastapi import APIRouter, HTTPException | |
from pydantic import BaseModel, Field | |
from .service import ( | |
ModelConfig, | |
TextModelType, | |
ImageModelType, | |
EmbeddingsService, | |
) | |
logger = logging.getLogger(__name__) | |
router = APIRouter( | |
tags=["v1"], | |
responses={404: {"description": "Not found"}}, | |
) | |
class ModelKind(str, Enum): | |
TEXT = "text" | |
IMAGE = "image" | |
def detect_model_kind(model_id: str) -> ModelKind: | |
""" | |
Detect whether model_id is for a text or an image model. | |
Raises ValueError if unrecognized. | |
""" | |
if model_id in [m.value for m in TextModelType]: | |
return ModelKind.TEXT | |
elif model_id in [m.value for m in ImageModelType]: | |
return ModelKind.IMAGE | |
else: | |
raise ValueError( | |
f"Unrecognized model ID: {model_id}.\n" | |
f"Valid text: {[m.value for m in TextModelType]}\n" | |
f"Valid image: {[m.value for m in ImageModelType]}" | |
) | |
class EmbeddingRequest(BaseModel): | |
""" | |
Input to /v1/embeddings | |
""" | |
model: str = Field( | |
default=TextModelType.MULTILINGUAL_E5_SMALL.value, | |
description=( | |
"Which model ID to use? " | |
"Text: ['multilingual-e5-small', 'multilingual-e5-base', 'multilingual-e5-large', 'snowflake-arctic-embed-l-v2.0', 'paraphrase-multilingual-MiniLM-L12-v2', 'paraphrase-multilingual-mpnet-base-v2', 'bge-m3']. " | |
"Image: ['siglip-base-patch16-256-multilingual']." | |
), | |
) | |
input: Union[str, List[str]] = Field( | |
..., description="Text(s) or Image URL(s)/path(s)." | |
) | |
class RankRequest(BaseModel): | |
""" | |
Input to /v1/rank | |
""" | |
model: str = Field( | |
default=TextModelType.MULTILINGUAL_E5_SMALL.value, | |
description=( | |
"Model ID for the queries. " | |
"Text or Image model, e.g. 'siglip-base-patch16-256-multilingual' for images." | |
), | |
) | |
queries: Union[str, List[str]] = Field( | |
..., description="Query text or image(s) depending on the model type." | |
) | |
candidates: List[str] = Field( | |
..., description="Candidate texts to rank. Must be text." | |
) | |
class EmbeddingResponse(BaseModel): | |
""" | |
Response of /v1/embeddings | |
""" | |
object: str | |
data: List[dict] | |
model: str | |
usage: dict | |
class RankResponse(BaseModel): | |
""" | |
Response of /v1/rank | |
""" | |
probabilities: List[List[float]] | |
cosine_similarities: List[List[float]] | |
service_config = ModelConfig() | |
embeddings_service = EmbeddingsService(config=service_config) | |
async def create_embeddings(request: EmbeddingRequest): | |
""" | |
Generates embeddings for the given input (text or image). | |
""" | |
try: | |
# 1) Determine if it's text or image | |
mkind = detect_model_kind(request.model) | |
# 2) Update global service config so it uses the correct model | |
if mkind == ModelKind.TEXT: | |
service_config.text_model_type = TextModelType(request.model) | |
else: | |
service_config.image_model_type = ImageModelType(request.model) | |
# 3) Generate | |
embeddings = await embeddings_service.generate_embeddings( | |
input_data=request.input, modality=mkind.value | |
) | |
# 4) Estimate tokens for text only | |
total_tokens = 0 | |
if mkind == ModelKind.TEXT: | |
total_tokens = embeddings_service.estimate_tokens(request.input) | |
resp = { | |
"object": "list", | |
"data": [], | |
"model": request.model, | |
"usage": { | |
"prompt_tokens": total_tokens, | |
"total_tokens": total_tokens, | |
}, | |
} | |
for idx, emb in enumerate(embeddings): | |
resp["data"].append( | |
{ | |
"object": "embedding", | |
"index": idx, | |
"embedding": emb.tolist(), | |
} | |
) | |
return resp | |
except Exception as e: | |
msg = ( | |
"Failed to generate embeddings. Check model ID, inputs, etc.\n" | |
f"Details: {str(e)}" | |
) | |
logger.error(msg) | |
raise HTTPException(status_code=500, detail=msg) | |
async def rank_candidates(request: RankRequest): | |
""" | |
Ranks candidate texts against the given queries (which can be text or image). | |
""" | |
try: | |
mkind = detect_model_kind(request.model) | |
if mkind == ModelKind.TEXT: | |
service_config.text_model_type = TextModelType(request.model) | |
else: | |
service_config.image_model_type = ImageModelType(request.model) | |
results = await embeddings_service.rank( | |
queries=request.queries, | |
candidates=request.candidates, | |
modality=mkind.value, | |
) | |
return results | |
except Exception as e: | |
msg = ( | |
"Failed to rank candidates. Check model ID, inputs, etc.\n" | |
f"Details: {str(e)}" | |
) | |
logger.error(msg) | |
raise HTTPException(status_code=500, detail=msg) | |