File size: 21,573 Bytes
717a9f0
 
 
 
 
 
 
 
 
 
 
 
 
 
3750a8d
717a9f0
 
 
44d06c0
717a9f0
4cda29c
58a3354
717a9f0
 
 
 
3750a8d
717a9f0
e397d59
 
717a9f0
 
e397d59
44d06c0
3750a8d
717a9f0
 
 
e397d59
717a9f0
 
 
 
 
e397d59
 
717a9f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e397d59
 
717a9f0
e397d59
717a9f0
 
 
 
 
 
 
 
 
 
 
e397d59
717a9f0
 
 
 
 
 
 
4cda29c
717a9f0
 
 
 
 
 
3750a8d
717a9f0
 
e397d59
717a9f0
 
 
 
 
 
 
 
4cda29c
717a9f0
 
 
 
 
 
 
 
58a3354
 
 
 
 
 
 
717a9f0
 
58a3354
717a9f0
 
 
 
 
 
 
3750a8d
717a9f0
44d06c0
717a9f0
3750a8d
44d06c0
717a9f0
 
 
58a3354
44d06c0
717a9f0
44d06c0
58a3354
 
 
717a9f0
 
 
 
 
 
 
 
 
 
 
 
 
58a3354
717a9f0
58a3354
717a9f0
 
 
3750a8d
717a9f0
 
44d06c0
717a9f0
 
44d06c0
 
717a9f0
 
58a3354
44d06c0
717a9f0
44d06c0
717a9f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44d06c0
717a9f0
 
e397d59
717a9f0
e397d59
717a9f0
 
 
 
 
 
4cda29c
717a9f0
 
44d06c0
717a9f0
 
3750a8d
44d06c0
717a9f0
44d06c0
 
717a9f0
44d06c0
717a9f0
 
 
44d06c0
717a9f0
 
e397d59
717a9f0
 
 
e397d59
717a9f0
 
e397d59
717a9f0
 
 
e397d59
717a9f0
 
e397d59
717a9f0
e397d59
717a9f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4cda29c
717a9f0
2d96a84
717a9f0
2d96a84
 
717a9f0
 
58a3354
2d96a84
717a9f0
2d96a84
717a9f0
4cda29c
717a9f0
 
 
 
 
 
 
 
 
 
 
 
 
 
4cda29c
717a9f0
2d96a84
58a3354
717a9f0
2d96a84
 
717a9f0
 
 
 
58a3354
2d96a84
717a9f0
2d96a84
717a9f0
 
 
 
 
 
 
 
 
 
 
 
 
 
58a3354
717a9f0
 
 
 
 
 
 
 
 
 
 
 
 
 
58a3354
4cda29c
717a9f0
4cda29c
717a9f0
4cda29c
717a9f0
4cda29c
 
717a9f0
 
 
 
 
 
 
4cda29c
 
717a9f0
 
 
 
 
 
58a3354
717a9f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4cda29c
717a9f0
 
4cda29c
717a9f0
4cda29c
717a9f0
4cda29c
717a9f0
e397d59
717a9f0
e397d59
 
717a9f0
e397d59
717a9f0
58a3354
 
717a9f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44d06c0
717a9f0
 
 
 
 
 
 
 
 
4cda29c
717a9f0
 
 
 
e397d59
717a9f0
4cda29c
717a9f0
 
 
 
 
e397d59
 
717a9f0
 
e397d59
717a9f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58a3354
717a9f0
 
 
e397d59
58a3354
717a9f0
 
 
 
 
 
 
 
58a3354
717a9f0
 
58a3354
717a9f0
 
 
 
e397d59
717a9f0
ff0a824
717a9f0
ff0a824
717a9f0
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
"""
Ollama Instance & Model Scanner for Hugging Face Space

This application scans for publicly accessible Ollama instances, retrieves model information,
and provides a secure interface for browsing discovered models.

Security Architecture:
- Server-side authorization based on environment variables
- Strict input sanitization
- Comprehensive error handling
- Asynchronous endpoint checking
- Efficient dataset management
"""

import os
import re
import json
import asyncio
import logging
import gradio as gr
import shodan
import aiohttp
from datasets import load_dataset, Dataset
from typing import Dict, List, Optional, Any, Tuple, Union
from datetime import datetime
from functools import wraps

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
    handlers=[logging.StreamHandler()]
)
logger = logging.getLogger(__name__)

# Security layer - Authorization functions

def authorization_required(func):
    """
    Decorator that enforces server-side authorization for protected functions.
    Authorization is determined by environment variables, not client parameters.
    
    Args:
        func: The function to protect with authorization
    
    Returns:
        A wrapped function that performs authorization check
    """
    @wraps(func)
    def wrapper(*args, **kwargs):
        if not verify_admin_authorization():
            logger.warning(f"Unauthorized access attempt to {func.__name__}")
            return {"error": "Unauthorized access"} if kwargs.get("return_error", False) else None
        return func(*args, **kwargs)
    return wrapper

def verify_admin_authorization() -> bool:
    """
    Perform server-side verification of admin authorization.
    Authorization is based on environment variables, not client data.
    
    Returns:
        bool: True if valid admin credentials exist
    """
    try:
        # Check for the existence of the Shodan API key
        api_key = os.getenv("SHODAN_API_KEY")
        hf_token = os.getenv("HF_TOKEN")
        
        return (api_key is not None and 
                len(api_key.strip()) > 10 and 
                hf_token is not None and 
                len(hf_token.strip()) > 10)
    except Exception as e:
        logger.error(f"Error verifying admin authorization: {str(e)}")
        return False

# Security layer - Input validation

def sanitize_input(input_string: str) -> str:
    """
    Sanitize user input to prevent injection attacks.
    
    Args:
        input_string: User input string to sanitize
        
    Returns:
        str: Sanitized string
    """
    if not isinstance(input_string, str):
        return ""
    
    # Remove potentially harmful characters
    sanitized = re.sub(r'[^\w\s\-\.]', '', input_string)
    # Limit length to prevent DoS
    return sanitized[:100]

def get_env_variables() -> Dict[str, str]:
    """
    Get all required environment variables.
    
    Returns:
        Dict[str, str]: Dictionary containing environment variables
        
    Raises:
        ValueError: If any required environment variable is missing
    """
    env_vars = {
        "SHODAN_API_KEY": os.getenv("SHODAN_API_KEY"),
        "SHODAN_QUERY": os.getenv("SHODAN_QUERY", "product:Ollama port:11434"),
        "HF_TOKEN": os.getenv("HF_TOKEN")
    }
    
    missing_vars = [name for name, value in env_vars.items() if not value]
    if missing_vars:
        error_msg = f"Missing required environment variables: {', '.join(missing_vars)}"
        logger.error(error_msg)
        raise ValueError(error_msg)
    
    return env_vars

# Data access layer

def load_or_create_dataset() -> Dataset:
    """
    Load the dataset from Hugging Face Hub or create it if it doesn't exist.
    
    Returns:
        Dataset: Loaded or created dataset
        
    Raises:
        Exception: If dataset loading or creation fails
    """
    try:
        # Attempt to get environment variables - this will raise ValueError if missing
        env_vars = get_env_variables()
        
        logger.info("Attempting to load dataset from Hugging Face Hub")
        dataset = load_dataset("latterworks/llama_checker_results", use_auth_token=env_vars["HF_TOKEN"])
        dataset = dataset['train']
        logger.info(f"Successfully loaded dataset with {len(dataset)} entries")
        return dataset
    except ValueError as e:
        # Re-raise environment variable errors
        raise
    except FileNotFoundError:
        # Only create dataset if admin authorization is verified
        if not verify_admin_authorization():
            logger.error("Unauthorized attempt to create dataset")
            raise ValueError("Unauthorized: Only admins can create the dataset")
            
        logger.info("Dataset not found, creating a new one")
        env_vars = get_env_variables()
        dataset = Dataset.from_dict({
            "ip": [], 
            "port": [], 
            "country": [], 
            "region": [], 
            "org": [], 
            "models": []
        })
        dataset.push_to_hub("latterworks/llama_checker_results", token=env_vars["HF_TOKEN"])
        logger.info("Created and pushed empty dataset to Hugging Face Hub")
        
        # Reload the dataset to ensure consistency
        dataset = load_dataset("latterworks/llama_checker_results", use_auth_token=env_vars["HF_TOKEN"])['train']
        return dataset
    except Exception as e:
        error_msg = f"Failed to load or create dataset: {str(e)}"
        logger.error(error_msg)
        raise

async def check_single_endpoint(ip: str, port: int, timeout: int = 5) -> Optional[List[Dict[str, Any]]]:
    """
    Check a single Ollama endpoint for available models.
    
    Args:
        ip: IP address of the Ollama instance
        port: Port number of the Ollama instance
        timeout: Timeout in seconds for the HTTP request
        
    Returns:
        Optional[List[Dict[str, Any]]]: List of model information dictionaries, or None if endpoint check fails
    """
    url = f"http://{ip}:{port}/api/tags"
    
    try:
        async with aiohttp.ClientSession() as session:
            async with session.get(url, timeout=timeout) as response:
                if response.status == 200:
                    data = await response.json()
                    if "models" in data and isinstance(data["models"], list):
                        logger.info(f"Successfully retrieved {len(data['models'])} models from {ip}:{port}")
                        return data["models"]
                    else:
                        logger.warning(f"Unexpected response format from {ip}:{port}")
                else:
                    logger.warning(f"Received status code {response.status} from {ip}:{port}")
    except aiohttp.ClientError as e:
        logger.warning(f"Connection error for {ip}:{port}: {str(e)}")
    except asyncio.TimeoutError:
        logger.warning(f"Connection timeout for {ip}:{port}")
    except Exception as e:
        logger.warning(f"Unexpected error checking {ip}:{port}: {str(e)}")
    
    return None

@authorization_required
async def check_ollama_endpoints(dataset: Dataset, progress: Optional[gr.Progress] = None) -> Dataset:
    """
    Check all Ollama endpoints in the dataset for available models.
    Requires admin authorization.
    
    Args:
        dataset: Dataset containing Ollama endpoints
        progress: Optional Gradio progress bar
        
    Returns:
        Dataset: Updated dataset with model information
    """
    if progress:
        progress(0, desc="Preparing to check endpoints...")
    
    # Build a list of tasks to execute
    total_endpoints = len(dataset)
    tasks = []
    
    for i, item in enumerate(dataset):
        ip = item["ip"]
        port = item["port"]
        tasks.append(check_single_endpoint(ip, port))
    
    # Execute tasks in batches to avoid overwhelming resources
    batch_size = 10
    updated_dataset = dataset.copy()
    
    for i in range(0, len(tasks), batch_size):
        if progress:
            progress(i / len(tasks), desc=f"Checking endpoints {i+1}-{min(i+batch_size, len(tasks))} of {len(tasks)}...")
        
        batch_tasks = tasks[i:i+batch_size]
        batch_results = await asyncio.gather(*batch_tasks)
        
        for j, result in enumerate(batch_results):
            idx = i + j
            if idx < len(dataset):
                if result:
                    updated_dataset = updated_dataset.add_item({
                        "ip": dataset[idx]["ip"],
                        "port": dataset[idx]["port"],
                        "country": dataset[idx]["country"],
                        "region": dataset[idx]["region"],
                        "org": dataset[idx]["org"],
                        "models": result
                    })
    
    if progress:
        progress(1.0, desc="Endpoint checking complete!")
    
    logger.info(f"Checked {total_endpoints} endpoints, found models on {sum(1 for item in updated_dataset if item['models'])} endpoints")
    
    # Push updated dataset to Hugging Face Hub
    env_vars = get_env_variables()
    updated_dataset.push_to_hub("latterworks/llama_checker_results", token=env_vars["HF_TOKEN"])
    logger.info("Successfully pushed updated dataset to Hugging Face Hub")
    
    return updated_dataset

@authorization_required
def scan_shodan(progress: Optional[gr.Progress] = None) -> str:
    """
    Scan Shodan for Ollama instances and update the dataset.
    Requires admin authorization.
    
    Args:
        progress: Optional Gradio progress bar
        
    Returns:
        str: Status message
    """
    try:
        # Get environment variables
        env_vars = get_env_variables()
        
        # Load dataset
        dataset = load_or_create_dataset()
        
        # Initialize Shodan API client
        api = shodan.Shodan(env_vars["SHODAN_API_KEY"])
        query = env_vars["SHODAN_QUERY"]
        
        if progress:
            progress(0, desc="Starting Shodan search...")
        
        # Get total results count
        count_result = api.count(query)
        total_results = count_result.get('total', 0)
        
        if total_results == 0:
            return "No Ollama instances found on Shodan."
        
        logger.info(f"Found {total_results} potential Ollama instances on Shodan")
        
        # Search Shodan
        new_instances = []
        results_processed = 0
        
        for result in api.search_cursor(query):
            results_processed += 1
            
            if progress:
                progress(results_processed / total_results, 
                         desc=f"Processing Shodan result {results_processed}/{total_results}")
            
            ip = result.get('ip_str')
            port = result.get('port', 11434)
            
            # Skip if instance already exists in dataset
            if any(item["ip"] == ip and item["port"] == port for item in dataset):
                continue
            
            # Extract location information
            country = result.get('location', {}).get('country_name', '')
            region = result.get('location', {}).get('region_name', '')
            org = result.get('org', '')
            
            new_instances.append({
                "ip": ip,
                "port": port,
                "country": country,
                "region": region,
                "org": org,
                "models": []
            })
        
        if progress:
            progress(1.0, desc="Shodan search complete!")
        
        # Add new instances to dataset
        updated_dataset = dataset.copy()
        for instance in new_instances:
            updated_dataset = updated_dataset.add_item(instance)
        
        logger.info(f"Added {len(new_instances)} new instances to dataset")
        
        # Check Ollama endpoints asynchronously
        if new_instances:
            loop = asyncio.new_event_loop()
            asyncio.set_event_loop(loop)
            updated_dataset = loop.run_until_complete(check_ollama_endpoints(updated_dataset, progress))
            loop.close()
        
        status_message = f"Scan complete! Found {len(new_instances)} new Ollama instances."
        return status_message
    
    except shodan.APIError as e:
        error_msg = f"Shodan API error: {str(e)}"
        logger.error(error_msg)
        return error_msg
    except Exception as e:
        error_msg = f"Error during Shodan scan: {str(e)}"
        logger.error(error_msg)
        return error_msg

def get_unique_values(dataset: Dataset, field: str) -> List[str]:
    """
    Get unique values for a specific field in the dataset.
    
    Args:
        dataset: Dataset to extract values from
        field: Field name to extract values from
        
    Returns:
        List[str]: List of unique values
    """
    unique_values = set()
    
    if field == "family" or field == "parameter_size" or field == "quantization_level":
        for item in dataset:
            models = item.get("models", [])
            if not models:
                continue
            
            for model in models:
                details = model.get("details", {})
                if details and field in details:
                    value = details.get(field)
                    if value:
                        unique_values.add(value)
    
    return sorted(list(unique_values))

def search_models(dataset: Dataset, name_search: str = "", family: str = "", parameter_size: str = "") -> Tuple[List[Dict[str, Any]], List[Dict[str, Any]]]:
    """
    Search for models in the dataset based on filters.
    Authorization is determined server-side.
    
    Args:
        dataset: Dataset to search
        name_search: Model name search string
        family: Model family filter
        parameter_size: Parameter size filter
        
    Returns:
        Tuple[List[Dict[str, Any]], List[Dict[str, Any]]]: Filtered model list and detailed model list
    """
    # Server-side authorization check
    is_admin = verify_admin_authorization()
    
    name_search = sanitize_input(name_search).lower()
    family = sanitize_input(family)
    parameter_size = sanitize_input(parameter_size)
    
    filtered_models = []
    detailed_models = []
    
    for item in dataset:
        models = item.get("models", [])
        if not models:
            continue
        
        ip = item.get("ip", "")
        port = item.get("port", 0)
        country = item.get("country", "")
        region = item.get("region", "")
        org = item.get("org", "")
        
        for model in models:
            model_name = model.get("name", "").lower()
            details = model.get("details", {})
            model_family = details.get("family", "")
            model_parameter_size = details.get("parameter_size", "")
            model_quantization = details.get("quantization_level", "")
            model_size = model.get("size", 0)
            model_size_gb = round(model_size / (1024**3), 2) if model_size else 0
            
            # Apply filters
            if name_search and name_search not in model_name:
                continue
            if family and family != model_family:
                continue
            if parameter_size and parameter_size != model_parameter_size:
                continue
            
            # Prepare filtered model entry
            filtered_model = {
                "name": model.get("name", ""),
                "family": model_family,
                "parameter_size": model_parameter_size,
                "quantization_level": model_quantization,
                "size_gb": model_size_gb
            }
            
            # Add IP and port information only for admins - server-side check
            if is_admin:
                filtered_model["ip"] = ip
                filtered_model["port"] = port
            
            filtered_models.append(filtered_model)
            
            # Prepare detailed model entry
            detailed_model = {
                "name": model.get("name", ""),
                "family": model_family,
                "parameter_size": model_parameter_size,
                "quantization_level": model_quantization,
                "size_gb": model_size_gb,
                "digest": model.get("digest", ""),
                "modified_at": model.get("modified_at", ""),
                "country": country,
                "region": region,
                "org": org
            }
            
            # Add IP and port information only for admins - server-side check
            if is_admin:
                detailed_model["ip"] = ip
                detailed_model["port"] = port
            
            detailed_models.append(detailed_model)
    
    return filtered_models, detailed_models

def create_ui() -> gr.Blocks:
    """
    Create the Gradio user interface with server-side authorization.
    
    Returns:
        gr.Blocks: Gradio interface
    """
    # Load dataset
    try:
        dataset = load_or_create_dataset()
    except Exception as e:
        # Fallback to empty dataset if loading fails
        logger.error(f"Failed to load dataset: {str(e)}")
        dataset = Dataset.from_dict({
            "ip": [], 
            "port": [], 
            "country": [], 
            "region": [], 
            "org": [], 
            "models": []
        })
    
    # Server-side authorization check
    is_admin = verify_admin_authorization()
    
    # Get unique values for dropdowns
    families = [""] + get_unique_values(dataset, "family")
    parameter_sizes = [""] + get_unique_values(dataset, "parameter_size")
    
    # Initial search results
    initial_results, initial_details = search_models(dataset)
    
    with gr.Blocks(title="Ollama Instance & Model Browser") as app:
        gr.Markdown("# Ollama Instance & Model Browser")
        
        with gr.Tabs() as tabs:
            with gr.Tab("Browse Models"):
                with gr.Row():
                    with gr.Column(scale=1):
                        name_search = gr.Textbox(label="Model Name Search")
                        family_dropdown = gr.Dropdown(
                            choices=families, 
                            label="Model Family", 
                            value=""
                        )
                        parameter_size_dropdown = gr.Dropdown(
                            choices=parameter_sizes, 
                            label="Parameter Size", 
                            value=""
                        )
                        search_button = gr.Button("Search Models")
                
                with gr.Row():
                    model_results = gr.DataFrame(
                        value=initial_results,
                        label="Model Results",
                        interactive=False
                    )
                
                with gr.Row():
                    model_details = gr.JSON(label="Model Details")
                
                def search_callback(name, family, parameter_size):
                    results, details = search_models(dataset, name, family, parameter_size)
                    return results, None
                
                def select_model(evt: gr.SelectData):
                    results, details = search_models(dataset, name_search.value, 
                                                    family_dropdown.value, 
                                                    parameter_size_dropdown.value)
                    if evt.index[0] < len(details):
                        return details[evt.index[0]]
                    return None
                
                search_button.click(
                    search_callback,
                    inputs=[name_search, family_dropdown, parameter_size_dropdown],
                    outputs=[model_results, model_details]
                )
                
                model_results.select(
                    select_model,
                    None,
                    model_details
                )
            
            # Only show Shodan Scan tab for admins - server-side check
            if is_admin:
                with gr.Tab("Shodan Scan"):
                    gr.Markdown("## Scan for Ollama Instances")
                    gr.Markdown("**Note:** This scan will update the dataset with new Ollama instances.")
                    scan_button = gr.Button("Start Scan")
                    scan_output = gr.Textbox(label="Scan Status")
                    
                    scan_button.click(
                        lambda progress=gr.Progress(): scan_shodan(progress),
                        outputs=scan_output
                    )
            
        # Refresh dataset when the app starts
        def refresh_data():
            nonlocal dataset
            try:
                dataset = load_or_create_dataset()
            except Exception as e:
                logger.error(f"Failed to refresh dataset: {str(e)}")
                # Continue with existing dataset
            
            results, details = search_models(dataset)
            return results
        
        app.load(
            fn=refresh_data,
            outputs=model_results
        )
    
    return app

# Main entry point
if __name__ == "__main__":
    try:
        ui = create_ui()
        ui.launch()
    except Exception as e:
        logger.critical(f"Failed to start application: {str(e)}")