Spaces:
Runtime error
Runtime error
File size: 24,750 Bytes
4d7f662 3f2c8e3 4d7f662 997cbe9 87b4d97 997cbe9 3f2c8e3 997cbe9 3f2c8e3 997cbe9 4d7f662 997cbe9 4d7f662 997cbe9 4d7f662 997cbe9 4d7f662 997cbe9 4d7f662 997cbe9 4d7f662 997cbe9 f5dce4b 34561c5 997cbe9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 |
from pathlib import Path
import json
import sys
import os
import logging
import traceback
from typing import Dict, List, Any, Optional, Union, Tuple
from concurrent.futures import ThreadPoolExecutor, as_completed
import time
# Third-party imports with robust error handling
try:
from PIL import Image, ExifTags
HAS_PIL = True
except ImportError:
HAS_PIL = False
logging.warning("PIL not installed - image processing disabled")
try:
import gradio as gr
HAS_GRADIO = True
except ImportError:
HAS_GRADIO = False
logging.warning("Gradio not installed - UI disabled")
try:
from datasets import Dataset
HAS_DATASETS = True
except ImportError:
HAS_DATASETS = False
logging.warning("Datasets library not installed - HF upload disabled")
# Advanced logging configuration
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(levelname)s] %(name)s:%(lineno)d - %(message)s",
handlers=[
logging.StreamHandler(sys.stdout),
logging.FileHandler("geo_extractor.log")
]
)
logger = logging.getLogger("geo_metadata_extractor")
# Configurable settings with environment variable overrides and validation
class Config:
"""Configuration container with validation and defaults"""
DEFAULT_IMAGE_DIR = Path(os.environ.get("IMAGE_DIR", "./images"))
DEFAULT_OUTPUT_FILE = Path(os.environ.get("OUTPUT_METADATA_FILE", "./metadata.jsonl"))
HF_USERNAME = os.environ.get("HF_USERNAME", "latterworks")
DATASET_NAME = os.environ.get("DATASET_NAME", "geo-metadata")
MAX_WORKERS = int(os.environ.get("MAX_WORKERS", "4"))
BATCH_SIZE = int(os.environ.get("BATCH_SIZE", "100"))
# Image formats with EXIF support prioritized first
SUPPORTED_EXTENSIONS = {
# Primary formats with good EXIF support
'.jpg', '.jpeg', '.tiff', '.tif',
# Secondary formats with limited metadata support
'.png', '.heic', '.bmp', '.webp'
}
@classmethod
def validate(cls) -> List[str]:
"""Validate configuration settings and return warnings"""
warnings = []
if cls.MAX_WORKERS < 1:
cls.MAX_WORKERS = 1
warnings.append(f"Invalid MAX_WORKERS value, reset to {cls.MAX_WORKERS}")
if cls.BATCH_SIZE < 10:
cls.BATCH_SIZE = 10
warnings.append(f"BATCH_SIZE too small, reset to {cls.BATCH_SIZE}")
return warnings
# Run config validation at import time
config_warnings = Config.validate()
for warning in config_warnings:
logger.warning(warning)
class GeoMetadataExtractor:
"""Core metadata extraction logic with advanced error handling"""
@staticmethod
def convert_to_degrees(value: Union[tuple, list]) -> Optional[float]:
"""
Convert GPS coordinates (degrees, minutes, seconds) to decimal degrees
Args:
value: Tuple of degrees, minutes, seconds
Returns:
Decimal degrees as float, or None if conversion fails
"""
try:
if not isinstance(value, (tuple, list)) or len(value) != 3:
raise ValueError(f"GPS value must be a tuple of 3 elements, got {type(value)}")
d, m, s = value
degrees = float(d) + (float(m) / 60.0) + (float(s) / 3600.0)
# Validate range
if not -180 <= degrees <= 180:
raise ValueError(f"GPS degrees out of valid range: {degrees}")
return degrees
except (TypeError, ValueError, ZeroDivisionError) as e:
logger.error(f"Failed to convert GPS coordinates: {e}")
return None
@staticmethod
def extract_gps_info(gps_info: Dict[int, Any]) -> Optional[Dict[str, Any]]:
"""
Extract and format GPS metadata from EXIF
Args:
gps_info: Dictionary of GPS EXIF tags
Returns:
Formatted GPS data including decimal latitude/longitude
"""
if not isinstance(gps_info, dict):
logger.warning("GPS info is not a dictionary, skipping")
return None
gps_data = {}
try:
# Extract tag data
for key, val in gps_info.items():
tag_name = ExifTags.GPSTAGS.get(key, f"unknown_gps_tag_{key}")
gps_data[tag_name] = val
# Process coordinates if available
if 'GPSLatitude' in gps_data and 'GPSLongitude' in gps_data:
lat = GeoMetadataExtractor.convert_to_degrees(gps_data['GPSLatitude'])
lon = GeoMetadataExtractor.convert_to_degrees(gps_data['GPSLongitude'])
if lat is None or lon is None:
logger.error("Failed to convert latitude/longitude, skipping GPS data")
return None
# Apply hemispheric references
lat_ref = gps_data.get('GPSLatitudeRef', 'N')
lon_ref = gps_data.get('GPSLongitudeRef', 'E')
if lat_ref not in {'N', 'S'} or lon_ref not in {'E', 'W'}:
logger.warning(f"Invalid GPS reference values: lat_ref={lat_ref}, lon_ref={lon_ref}")
else:
if lat_ref == 'S':
lat = -lat
if lon_ref == 'W':
lon = -lon
# Add calculated decimal coordinates
gps_data['Latitude'] = round(lat, 6) # 6 decimal places ≈ 10cm precision
gps_data['Longitude'] = round(lon, 6)
# Add additional derived fields
if 'GPSAltitude' in gps_data:
try:
altitude = gps_data['GPSAltitude']
if hasattr(altitude, 'numerator') and hasattr(altitude, 'denominator'):
gps_data['AltitudeMeters'] = float(altitude.numerator) / float(altitude.denominator)
except Exception as e:
logger.warning(f"Failed to process altitude: {e}")
return gps_data
except Exception as e:
stack_trace = traceback.format_exc()
logger.error(f"GPS extraction error: {e}\n{stack_trace}")
return None
@staticmethod
def make_serializable(value: Any) -> Any:
"""
Recursively convert non-serializable types to JSON-compatible values
Args:
value: Any value to convert
Returns:
JSON-serializable representation of value
"""
try:
# Handle rational numbers (fractions)
if hasattr(value, 'numerator') and hasattr(value, 'denominator'):
if value.denominator == 0:
return "undefined (division by zero)"
return float(value.numerator) / float(value.denominator)
# Handle nested structures
elif isinstance(value, (tuple, list)):
return [GeoMetadataExtractor.make_serializable(item) for item in value]
elif isinstance(value, dict):
return {str(k): GeoMetadataExtractor.make_serializable(v) for k, v in value.items()}
# Handle binary data
elif isinstance(value, bytes):
return value.decode('utf-8', errors='replace')
# Test if directly serializable
json.dumps(value)
return value
except Exception as e:
logger.warning(f"Value serialization failed, converting to string: {e}")
return str(value)
@staticmethod
def get_image_metadata(image_path: Path) -> Dict[str, Any]:
"""
Extract comprehensive metadata from an image file
Args:
image_path: Path to image file
Returns:
Dictionary of extracted metadata
"""
# Core metadata with absolute file path
metadata = {
"file_name": str(image_path.absolute()),
"extraction_time": time.strftime("%Y-%m-%d %H:%M:%S")
}
try:
# Process file system metadata first (always available)
stat_info = image_path.stat()
metadata.update({
"file_size": stat_info.st_size,
"file_extension": image_path.suffix.lower(),
"last_modified": time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(stat_info.st_mtime)),
"creation_time": time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(stat_info.st_ctime))
})
# Exit early if PIL not available
if not HAS_PIL:
metadata["error"] = "PIL library not available"
return metadata
# Extract image and EXIF data
with Image.open(image_path) as image:
# Basic image properties
metadata.update({
"format": image.format or "unknown",
"size": list(image.size),
"width": image.width,
"height": image.height,
"mode": image.mode or "unknown",
"aspect_ratio": round(image.width / image.height, 3) if image.height > 0 else None
})
# Extract EXIF data if available
exif_data = None
try:
# Different methods depending on image format
if hasattr(image, '_getexif'):
exif_data = image._getexif()
elif hasattr(image, 'getexif'):
exif_data = image.getexif()
# Some formats like PNG store metadata differently
if not exif_data and image.format == 'PNG' and 'exif' in image.info:
exif_data = image.info.get('exif')
metadata["exif_source"] = "PNG info block"
except AttributeError:
metadata["exif_error"] = "No EXIF extraction method available"
except Exception as e:
metadata["exif_error"] = f"EXIF extraction failed: {str(e)}"
# Process EXIF data if found
if exif_data and isinstance(exif_data, dict):
for tag_id, value in exif_data.items():
# Handle GPS data specially
if tag_id in ExifTags.TAGS and ExifTags.TAGS[tag_id] == "GPSInfo":
gps_info = GeoMetadataExtractor.extract_gps_info(value)
if gps_info:
metadata["gps_info"] = GeoMetadataExtractor.make_serializable(gps_info)
else:
# Get tag name or use numeric ID with tag_ prefix
tag_name = ExifTags.TAGS.get(tag_id, f"tag_{tag_id}").lower()
metadata[tag_name] = GeoMetadataExtractor.make_serializable(value)
# Add camera model and date taken for convenience if available
if 'model' in metadata:
metadata["camera_model"] = metadata['model']
if 'datetimeoriginal' in metadata:
metadata["date_taken"] = metadata['datetimeoriginal']
return metadata
except Exception as e:
# Capture full stack trace for debugging
stack_trace = traceback.format_exc()
logger.error(f"Image {image_path} processing failed: {e}\n{stack_trace}")
# Return partial metadata with error information
metadata["error"] = str(e)
metadata["error_trace"] = stack_trace
return metadata
class MetadataProcessor:
"""Handles batch processing and file operations"""
@staticmethod
def process_images(input_path: Union[str, Path]) -> List[Dict[str, Any]]:
"""
Process image files to extract metadata
Args:
input_path: Path to image file or directory
Returns:
List of metadata dictionaries for all processed images
"""
metadata_list = []
input_path = Path(input_path)
start_time = time.time()
# Handle single file case
if input_path.is_file() and input_path.suffix.lower() in Config.SUPPORTED_EXTENSIONS:
logger.info(f"Processing single image: {input_path}")
metadata = GeoMetadataExtractor.get_image_metadata(input_path)
if metadata:
metadata_list.append(metadata)
# Handle directory case
elif input_path.is_dir():
logger.info(f"Processing directory: {input_path}")
# Collect all image files first
image_paths = [
path for path in input_path.rglob("*")
if path.is_file() and path.suffix.lower() in Config.SUPPORTED_EXTENSIONS
]
total_images = len(image_paths)
logger.info(f"Found {total_images} images to process")
# Process in parallel with progress tracking
if total_images > 0:
processed = 0
with ThreadPoolExecutor(max_workers=Config.MAX_WORKERS) as executor:
# Submit all tasks
future_to_path = {
executor.submit(GeoMetadataExtractor.get_image_metadata, path): path
for path in image_paths
}
# Process as they complete
for future in as_completed(future_to_path):
path = future_to_path[future]
try:
metadata = future.result()
if metadata:
metadata_list.append(metadata)
# Update progress
processed += 1
if processed % 10 == 0 or processed == total_images:
elapsed = time.time() - start_time
rate = processed / elapsed if elapsed > 0 else 0
logger.info(f"Processed {processed}/{total_images} images ({processed/total_images*100:.1f}%) - {rate:.2f} images/sec")
except Exception as e:
logger.error(f"Error processing {path}: {e}")
else:
logger.warning(f"No images found in directory: {input_path}")
else:
logger.error(f"Invalid input: {input_path} is not a file or directory")
return [{"error": f"Invalid input: {input_path} is not a file or directory"}]
# Summarize results
elapsed = time.time() - start_time
images_per_second = len(metadata_list) / elapsed if elapsed > 0 else 0
logger.info(f"Completed processing {len(metadata_list)} images in {elapsed:.2f} seconds ({images_per_second:.2f} images/sec)")
return metadata_list
@staticmethod
def save_metadata_to_jsonl(metadata_list: List[Dict[str, Any]], output_file: Path) -> bool:
"""
Save metadata to JSONL format with error handling
Args:
metadata_list: List of metadata dictionaries
output_file: Path to output file
Returns:
True if save was successful, False otherwise
"""
try:
# Create directory if needed
output_file.parent.mkdir(parents=True, exist_ok=True)
# Write to file
with output_file.open('w', encoding='utf-8') as f:
for entry in metadata_list:
f.write(json.dumps(entry, ensure_ascii=False) + '\n')
logger.info(f"Successfully saved {len(metadata_list)} entries to {output_file}")
return True
except Exception as e:
stack_trace = traceback.format_exc()
logger.error(f"Failed to save metadata: {e}\n{stack_trace}")
return False
@staticmethod
def upload_to_huggingface(metadata_file: Path, username: str, dataset_name: str) -> str:
"""
Upload metadata to Hugging Face as a dataset
Args:
metadata_file: Path to JSONL file
username: Hugging Face username
dataset_name: Dataset name to create/update
Returns:
Status message
"""
if not HAS_DATASETS:
return "Hugging Face datasets library not installed"
try:
# Read metadata
metadata_list = []
with metadata_file.open('r', encoding='utf-8') as f:
for line in f:
metadata_list.append(json.loads(line))
if not metadata_list:
return "No metadata to upload"
# Create dataset
logger.info(f"Creating dataset with {len(metadata_list)} entries")
dataset = Dataset.from_dict({
"images": [entry.get("file_name", "unknown") for entry in metadata_list],
"metadata": metadata_list
})
# Push to Hub
dataset_path = f"{username}/{dataset_name}"
logger.info(f"Pushing dataset to {dataset_path}")
dataset.push_to_hub(dataset_path, private=False)
return f"Successfully uploaded to {dataset_path} with {len(metadata_list)} entries"
except Exception as e:
stack_trace = traceback.format_exc()
logger.error(f"Upload failed: {e}\n{stack_trace}")
return f"Upload failed: {str(e)}"
class GradioInterface:
"""Gradio UI interface"""
@staticmethod
def create_interface():
"""
Create the Gradio interface
Returns:
Gradio interface object
"""
if not HAS_GRADIO:
logger.error("Gradio not installed, cannot create interface")
return None
def process_input(image_file, dir_path: str, username: str, dataset_name: str) -> str:
"""
Process inputs from Gradio UI
Args:
image_file: Uploaded file object or None
dir_path: Directory path string
username: Hugging Face username
dataset_name: Dataset name
Returns:
Results as formatted text
"""
output_lines = []
metadata_list = []
# Handle single image upload
if image_file:
image_path = Path(image_file.name)
output_lines.append(f"## Processing Single Image: {image_path.name}")
single_metadata = MetadataProcessor.process_images(image_path)
metadata_list.extend(single_metadata)
# Format first entry for display
if single_metadata:
output_lines.append("### Image Metadata:")
output_lines.append("```json")
output_lines.append(json.dumps(single_metadata[0], indent=2))
output_lines.append("```")
# Handle directory processing
if dir_path:
dir_path = Path(dir_path)
if dir_path.is_dir():
output_lines.append(f"## Processing Directory: {dir_path}")
dir_metadata = MetadataProcessor.process_images(dir_path)
# Add to full list
metadata_list.extend(dir_metadata)
# Summarize results
output_lines.append(f"### Directory Results:")
output_lines.append(f"- Processed {len(dir_metadata)} images")
# Location data summary
location_count = sum(1 for entry in dir_metadata if entry.get("gps_info") is not None)
output_lines.append(f"- Found location data in {location_count} images ({location_count/len(dir_metadata)*100:.1f}% if len(dir_metadata) > 0 else 0}%)")
# Show a few examples if available
if dir_metadata:
output_lines.append("\n### Sample Entry:")
output_lines.append("```json")
output_lines.append(json.dumps(dir_metadata[0], indent=2))
output_lines.append("```")
else:
output_lines.append(f"⚠️ Error: {dir_path} is not a directory")
# Save and upload if we have metadata
if metadata_list:
temp_output_file = Path("temp_metadata.jsonl")
output_lines.append(f"\n## Saving and Uploading")
if MetadataProcessor.save_metadata_to_jsonl(metadata_list, temp_output_file):
output_lines.append(f"✅ Saved metadata to {temp_output_file}")
# Upload to Hugging Face
upload_result = MetadataProcessor.upload_to_huggingface(
temp_output_file, username, dataset_name
)
output_lines.append(f"📤 {upload_result}")
else:
output_lines.append("❌ Failed to save metadata")
return "\n".join(output_lines) if output_lines else "Please upload an image or provide a directory path"
# Create the interface
demo = gr.Interface(
fn=process_input,
inputs=[
gr.File(label="Upload Image", file_types=list(Config.SUPPORTED_EXTENSIONS)),
gr.Textbox(label="Image Directory", placeholder=str(Config.DEFAULT_IMAGE_DIR), value=str(Config.DEFAULT_IMAGE_DIR)),
gr.Textbox(label="Hugging Face Username", value=Config.HF_USERNAME),
gr.Textbox(label="Dataset Name", value=Config.DATASET_NAME)
],
outputs=gr.Markdown(label="Results"),
title="Enhanced Geo-Metadata Extractor",
description=(
"Upload an image or process a directory to extract location metadata and other EXIF data. "
"Results can be automatically uploaded to Hugging Face Datasets."
),
allow_flagging="never",
examples=[
[None, "sample_images", Config.HF_USERNAME, "sample-geo-metadata"]
]
)
return demo
def main():
"""Main entry point"""
logger.info("Starting Geo-Metadata Extractor")
# Check dependencies
if not HAS_PIL:
logger.error("PIL is required for image processing. Please install: pip install pillow")
sys.exit(1)
# Create and launch the UI if running directly
if HAS_GRADIO:
logger.info("Creating Gradio interface")
demo = GradioInterface.create_interface()
if demo:
logger.info("Launching Gradio interface")
demo.launch(server_name="0.0.0.0", server_port=7860)
else:
logger.error("Failed to create Gradio interface")
else:
logger.warning("Gradio not installed, running in CLI mode")
# Process default directory as fallback
if Config.DEFAULT_IMAGE_DIR.exists():
logger.info(f"Processing default directory: {Config.DEFAULT_IMAGE_DIR}")
metadata = MetadataProcessor.process_images(Config.DEFAULT_IMAGE_DIR)
if metadata:
logger.info(f"Saving {len(metadata)} entries to {Config.DEFAULT_OUTPUT_FILE}")
MetadataProcessor.save_metadata_to_jsonl(metadata, Config.DEFAULT_OUTPUT_FILE)
logger.info(f"Metadata saved to {Config.DEFAULT_OUTPUT_FILE}")
else:
logger.error(f"Default directory not found: {Config.DEFAULT_IMAGE_DIR}")
if __name__ == "__main__":
main() |