latterworks's picture
Update app.py
997cbe9 verified
from pathlib import Path
import json
import sys
import os
import logging
import traceback
from typing import Dict, List, Any, Optional, Union, Tuple
from concurrent.futures import ThreadPoolExecutor, as_completed
import time
# Third-party imports with robust error handling
try:
from PIL import Image, ExifTags
HAS_PIL = True
except ImportError:
HAS_PIL = False
logging.warning("PIL not installed - image processing disabled")
try:
import gradio as gr
HAS_GRADIO = True
except ImportError:
HAS_GRADIO = False
logging.warning("Gradio not installed - UI disabled")
try:
from datasets import Dataset
HAS_DATASETS = True
except ImportError:
HAS_DATASETS = False
logging.warning("Datasets library not installed - HF upload disabled")
# Advanced logging configuration
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(levelname)s] %(name)s:%(lineno)d - %(message)s",
handlers=[
logging.StreamHandler(sys.stdout),
logging.FileHandler("geo_extractor.log")
]
)
logger = logging.getLogger("geo_metadata_extractor")
# Configurable settings with environment variable overrides and validation
class Config:
"""Configuration container with validation and defaults"""
DEFAULT_IMAGE_DIR = Path(os.environ.get("IMAGE_DIR", "./images"))
DEFAULT_OUTPUT_FILE = Path(os.environ.get("OUTPUT_METADATA_FILE", "./metadata.jsonl"))
HF_USERNAME = os.environ.get("HF_USERNAME", "latterworks")
DATASET_NAME = os.environ.get("DATASET_NAME", "geo-metadata")
MAX_WORKERS = int(os.environ.get("MAX_WORKERS", "4"))
BATCH_SIZE = int(os.environ.get("BATCH_SIZE", "100"))
# Image formats with EXIF support prioritized first
SUPPORTED_EXTENSIONS = {
# Primary formats with good EXIF support
'.jpg', '.jpeg', '.tiff', '.tif',
# Secondary formats with limited metadata support
'.png', '.heic', '.bmp', '.webp'
}
@classmethod
def validate(cls) -> List[str]:
"""Validate configuration settings and return warnings"""
warnings = []
if cls.MAX_WORKERS < 1:
cls.MAX_WORKERS = 1
warnings.append(f"Invalid MAX_WORKERS value, reset to {cls.MAX_WORKERS}")
if cls.BATCH_SIZE < 10:
cls.BATCH_SIZE = 10
warnings.append(f"BATCH_SIZE too small, reset to {cls.BATCH_SIZE}")
return warnings
# Run config validation at import time
config_warnings = Config.validate()
for warning in config_warnings:
logger.warning(warning)
class GeoMetadataExtractor:
"""Core metadata extraction logic with advanced error handling"""
@staticmethod
def convert_to_degrees(value: Union[tuple, list]) -> Optional[float]:
"""
Convert GPS coordinates (degrees, minutes, seconds) to decimal degrees
Args:
value: Tuple of degrees, minutes, seconds
Returns:
Decimal degrees as float, or None if conversion fails
"""
try:
if not isinstance(value, (tuple, list)) or len(value) != 3:
raise ValueError(f"GPS value must be a tuple of 3 elements, got {type(value)}")
d, m, s = value
degrees = float(d) + (float(m) / 60.0) + (float(s) / 3600.0)
# Validate range
if not -180 <= degrees <= 180:
raise ValueError(f"GPS degrees out of valid range: {degrees}")
return degrees
except (TypeError, ValueError, ZeroDivisionError) as e:
logger.error(f"Failed to convert GPS coordinates: {e}")
return None
@staticmethod
def extract_gps_info(gps_info: Dict[int, Any]) -> Optional[Dict[str, Any]]:
"""
Extract and format GPS metadata from EXIF
Args:
gps_info: Dictionary of GPS EXIF tags
Returns:
Formatted GPS data including decimal latitude/longitude
"""
if not isinstance(gps_info, dict):
logger.warning("GPS info is not a dictionary, skipping")
return None
gps_data = {}
try:
# Extract tag data
for key, val in gps_info.items():
tag_name = ExifTags.GPSTAGS.get(key, f"unknown_gps_tag_{key}")
gps_data[tag_name] = val
# Process coordinates if available
if 'GPSLatitude' in gps_data and 'GPSLongitude' in gps_data:
lat = GeoMetadataExtractor.convert_to_degrees(gps_data['GPSLatitude'])
lon = GeoMetadataExtractor.convert_to_degrees(gps_data['GPSLongitude'])
if lat is None or lon is None:
logger.error("Failed to convert latitude/longitude, skipping GPS data")
return None
# Apply hemispheric references
lat_ref = gps_data.get('GPSLatitudeRef', 'N')
lon_ref = gps_data.get('GPSLongitudeRef', 'E')
if lat_ref not in {'N', 'S'} or lon_ref not in {'E', 'W'}:
logger.warning(f"Invalid GPS reference values: lat_ref={lat_ref}, lon_ref={lon_ref}")
else:
if lat_ref == 'S':
lat = -lat
if lon_ref == 'W':
lon = -lon
# Add calculated decimal coordinates
gps_data['Latitude'] = round(lat, 6) # 6 decimal places ≈ 10cm precision
gps_data['Longitude'] = round(lon, 6)
# Add additional derived fields
if 'GPSAltitude' in gps_data:
try:
altitude = gps_data['GPSAltitude']
if hasattr(altitude, 'numerator') and hasattr(altitude, 'denominator'):
gps_data['AltitudeMeters'] = float(altitude.numerator) / float(altitude.denominator)
except Exception as e:
logger.warning(f"Failed to process altitude: {e}")
return gps_data
except Exception as e:
stack_trace = traceback.format_exc()
logger.error(f"GPS extraction error: {e}\n{stack_trace}")
return None
@staticmethod
def make_serializable(value: Any) -> Any:
"""
Recursively convert non-serializable types to JSON-compatible values
Args:
value: Any value to convert
Returns:
JSON-serializable representation of value
"""
try:
# Handle rational numbers (fractions)
if hasattr(value, 'numerator') and hasattr(value, 'denominator'):
if value.denominator == 0:
return "undefined (division by zero)"
return float(value.numerator) / float(value.denominator)
# Handle nested structures
elif isinstance(value, (tuple, list)):
return [GeoMetadataExtractor.make_serializable(item) for item in value]
elif isinstance(value, dict):
return {str(k): GeoMetadataExtractor.make_serializable(v) for k, v in value.items()}
# Handle binary data
elif isinstance(value, bytes):
return value.decode('utf-8', errors='replace')
# Test if directly serializable
json.dumps(value)
return value
except Exception as e:
logger.warning(f"Value serialization failed, converting to string: {e}")
return str(value)
@staticmethod
def get_image_metadata(image_path: Path) -> Dict[str, Any]:
"""
Extract comprehensive metadata from an image file
Args:
image_path: Path to image file
Returns:
Dictionary of extracted metadata
"""
# Core metadata with absolute file path
metadata = {
"file_name": str(image_path.absolute()),
"extraction_time": time.strftime("%Y-%m-%d %H:%M:%S")
}
try:
# Process file system metadata first (always available)
stat_info = image_path.stat()
metadata.update({
"file_size": stat_info.st_size,
"file_extension": image_path.suffix.lower(),
"last_modified": time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(stat_info.st_mtime)),
"creation_time": time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(stat_info.st_ctime))
})
# Exit early if PIL not available
if not HAS_PIL:
metadata["error"] = "PIL library not available"
return metadata
# Extract image and EXIF data
with Image.open(image_path) as image:
# Basic image properties
metadata.update({
"format": image.format or "unknown",
"size": list(image.size),
"width": image.width,
"height": image.height,
"mode": image.mode or "unknown",
"aspect_ratio": round(image.width / image.height, 3) if image.height > 0 else None
})
# Extract EXIF data if available
exif_data = None
try:
# Different methods depending on image format
if hasattr(image, '_getexif'):
exif_data = image._getexif()
elif hasattr(image, 'getexif'):
exif_data = image.getexif()
# Some formats like PNG store metadata differently
if not exif_data and image.format == 'PNG' and 'exif' in image.info:
exif_data = image.info.get('exif')
metadata["exif_source"] = "PNG info block"
except AttributeError:
metadata["exif_error"] = "No EXIF extraction method available"
except Exception as e:
metadata["exif_error"] = f"EXIF extraction failed: {str(e)}"
# Process EXIF data if found
if exif_data and isinstance(exif_data, dict):
for tag_id, value in exif_data.items():
# Handle GPS data specially
if tag_id in ExifTags.TAGS and ExifTags.TAGS[tag_id] == "GPSInfo":
gps_info = GeoMetadataExtractor.extract_gps_info(value)
if gps_info:
metadata["gps_info"] = GeoMetadataExtractor.make_serializable(gps_info)
else:
# Get tag name or use numeric ID with tag_ prefix
tag_name = ExifTags.TAGS.get(tag_id, f"tag_{tag_id}").lower()
metadata[tag_name] = GeoMetadataExtractor.make_serializable(value)
# Add camera model and date taken for convenience if available
if 'model' in metadata:
metadata["camera_model"] = metadata['model']
if 'datetimeoriginal' in metadata:
metadata["date_taken"] = metadata['datetimeoriginal']
return metadata
except Exception as e:
# Capture full stack trace for debugging
stack_trace = traceback.format_exc()
logger.error(f"Image {image_path} processing failed: {e}\n{stack_trace}")
# Return partial metadata with error information
metadata["error"] = str(e)
metadata["error_trace"] = stack_trace
return metadata
class MetadataProcessor:
"""Handles batch processing and file operations"""
@staticmethod
def process_images(input_path: Union[str, Path]) -> List[Dict[str, Any]]:
"""
Process image files to extract metadata
Args:
input_path: Path to image file or directory
Returns:
List of metadata dictionaries for all processed images
"""
metadata_list = []
input_path = Path(input_path)
start_time = time.time()
# Handle single file case
if input_path.is_file() and input_path.suffix.lower() in Config.SUPPORTED_EXTENSIONS:
logger.info(f"Processing single image: {input_path}")
metadata = GeoMetadataExtractor.get_image_metadata(input_path)
if metadata:
metadata_list.append(metadata)
# Handle directory case
elif input_path.is_dir():
logger.info(f"Processing directory: {input_path}")
# Collect all image files first
image_paths = [
path for path in input_path.rglob("*")
if path.is_file() and path.suffix.lower() in Config.SUPPORTED_EXTENSIONS
]
total_images = len(image_paths)
logger.info(f"Found {total_images} images to process")
# Process in parallel with progress tracking
if total_images > 0:
processed = 0
with ThreadPoolExecutor(max_workers=Config.MAX_WORKERS) as executor:
# Submit all tasks
future_to_path = {
executor.submit(GeoMetadataExtractor.get_image_metadata, path): path
for path in image_paths
}
# Process as they complete
for future in as_completed(future_to_path):
path = future_to_path[future]
try:
metadata = future.result()
if metadata:
metadata_list.append(metadata)
# Update progress
processed += 1
if processed % 10 == 0 or processed == total_images:
elapsed = time.time() - start_time
rate = processed / elapsed if elapsed > 0 else 0
logger.info(f"Processed {processed}/{total_images} images ({processed/total_images*100:.1f}%) - {rate:.2f} images/sec")
except Exception as e:
logger.error(f"Error processing {path}: {e}")
else:
logger.warning(f"No images found in directory: {input_path}")
else:
logger.error(f"Invalid input: {input_path} is not a file or directory")
return [{"error": f"Invalid input: {input_path} is not a file or directory"}]
# Summarize results
elapsed = time.time() - start_time
images_per_second = len(metadata_list) / elapsed if elapsed > 0 else 0
logger.info(f"Completed processing {len(metadata_list)} images in {elapsed:.2f} seconds ({images_per_second:.2f} images/sec)")
return metadata_list
@staticmethod
def save_metadata_to_jsonl(metadata_list: List[Dict[str, Any]], output_file: Path) -> bool:
"""
Save metadata to JSONL format with error handling
Args:
metadata_list: List of metadata dictionaries
output_file: Path to output file
Returns:
True if save was successful, False otherwise
"""
try:
# Create directory if needed
output_file.parent.mkdir(parents=True, exist_ok=True)
# Write to file
with output_file.open('w', encoding='utf-8') as f:
for entry in metadata_list:
f.write(json.dumps(entry, ensure_ascii=False) + '\n')
logger.info(f"Successfully saved {len(metadata_list)} entries to {output_file}")
return True
except Exception as e:
stack_trace = traceback.format_exc()
logger.error(f"Failed to save metadata: {e}\n{stack_trace}")
return False
@staticmethod
def upload_to_huggingface(metadata_file: Path, username: str, dataset_name: str) -> str:
"""
Upload metadata to Hugging Face as a dataset
Args:
metadata_file: Path to JSONL file
username: Hugging Face username
dataset_name: Dataset name to create/update
Returns:
Status message
"""
if not HAS_DATASETS:
return "Hugging Face datasets library not installed"
try:
# Read metadata
metadata_list = []
with metadata_file.open('r', encoding='utf-8') as f:
for line in f:
metadata_list.append(json.loads(line))
if not metadata_list:
return "No metadata to upload"
# Create dataset
logger.info(f"Creating dataset with {len(metadata_list)} entries")
dataset = Dataset.from_dict({
"images": [entry.get("file_name", "unknown") for entry in metadata_list],
"metadata": metadata_list
})
# Push to Hub
dataset_path = f"{username}/{dataset_name}"
logger.info(f"Pushing dataset to {dataset_path}")
dataset.push_to_hub(dataset_path, private=False)
return f"Successfully uploaded to {dataset_path} with {len(metadata_list)} entries"
except Exception as e:
stack_trace = traceback.format_exc()
logger.error(f"Upload failed: {e}\n{stack_trace}")
return f"Upload failed: {str(e)}"
class GradioInterface:
"""Gradio UI interface"""
@staticmethod
def create_interface():
"""
Create the Gradio interface
Returns:
Gradio interface object
"""
if not HAS_GRADIO:
logger.error("Gradio not installed, cannot create interface")
return None
def process_input(image_file, dir_path: str, username: str, dataset_name: str) -> str:
"""
Process inputs from Gradio UI
Args:
image_file: Uploaded file object or None
dir_path: Directory path string
username: Hugging Face username
dataset_name: Dataset name
Returns:
Results as formatted text
"""
output_lines = []
metadata_list = []
# Handle single image upload
if image_file:
image_path = Path(image_file.name)
output_lines.append(f"## Processing Single Image: {image_path.name}")
single_metadata = MetadataProcessor.process_images(image_path)
metadata_list.extend(single_metadata)
# Format first entry for display
if single_metadata:
output_lines.append("### Image Metadata:")
output_lines.append("```json")
output_lines.append(json.dumps(single_metadata[0], indent=2))
output_lines.append("```")
# Handle directory processing
if dir_path:
dir_path = Path(dir_path)
if dir_path.is_dir():
output_lines.append(f"## Processing Directory: {dir_path}")
dir_metadata = MetadataProcessor.process_images(dir_path)
# Add to full list
metadata_list.extend(dir_metadata)
# Summarize results
output_lines.append(f"### Directory Results:")
output_lines.append(f"- Processed {len(dir_metadata)} images")
# Location data summary
location_count = sum(1 for entry in dir_metadata if entry.get("gps_info") is not None)
output_lines.append(f"- Found location data in {location_count} images ({location_count/len(dir_metadata)*100:.1f}% if len(dir_metadata) > 0 else 0}%)")
# Show a few examples if available
if dir_metadata:
output_lines.append("\n### Sample Entry:")
output_lines.append("```json")
output_lines.append(json.dumps(dir_metadata[0], indent=2))
output_lines.append("```")
else:
output_lines.append(f"⚠️ Error: {dir_path} is not a directory")
# Save and upload if we have metadata
if metadata_list:
temp_output_file = Path("temp_metadata.jsonl")
output_lines.append(f"\n## Saving and Uploading")
if MetadataProcessor.save_metadata_to_jsonl(metadata_list, temp_output_file):
output_lines.append(f"✅ Saved metadata to {temp_output_file}")
# Upload to Hugging Face
upload_result = MetadataProcessor.upload_to_huggingface(
temp_output_file, username, dataset_name
)
output_lines.append(f"📤 {upload_result}")
else:
output_lines.append("❌ Failed to save metadata")
return "\n".join(output_lines) if output_lines else "Please upload an image or provide a directory path"
# Create the interface
demo = gr.Interface(
fn=process_input,
inputs=[
gr.File(label="Upload Image", file_types=list(Config.SUPPORTED_EXTENSIONS)),
gr.Textbox(label="Image Directory", placeholder=str(Config.DEFAULT_IMAGE_DIR), value=str(Config.DEFAULT_IMAGE_DIR)),
gr.Textbox(label="Hugging Face Username", value=Config.HF_USERNAME),
gr.Textbox(label="Dataset Name", value=Config.DATASET_NAME)
],
outputs=gr.Markdown(label="Results"),
title="Enhanced Geo-Metadata Extractor",
description=(
"Upload an image or process a directory to extract location metadata and other EXIF data. "
"Results can be automatically uploaded to Hugging Face Datasets."
),
allow_flagging="never",
examples=[
[None, "sample_images", Config.HF_USERNAME, "sample-geo-metadata"]
]
)
return demo
def main():
"""Main entry point"""
logger.info("Starting Geo-Metadata Extractor")
# Check dependencies
if not HAS_PIL:
logger.error("PIL is required for image processing. Please install: pip install pillow")
sys.exit(1)
# Create and launch the UI if running directly
if HAS_GRADIO:
logger.info("Creating Gradio interface")
demo = GradioInterface.create_interface()
if demo:
logger.info("Launching Gradio interface")
demo.launch(server_name="0.0.0.0", server_port=7860)
else:
logger.error("Failed to create Gradio interface")
else:
logger.warning("Gradio not installed, running in CLI mode")
# Process default directory as fallback
if Config.DEFAULT_IMAGE_DIR.exists():
logger.info(f"Processing default directory: {Config.DEFAULT_IMAGE_DIR}")
metadata = MetadataProcessor.process_images(Config.DEFAULT_IMAGE_DIR)
if metadata:
logger.info(f"Saving {len(metadata)} entries to {Config.DEFAULT_OUTPUT_FILE}")
MetadataProcessor.save_metadata_to_jsonl(metadata, Config.DEFAULT_OUTPUT_FILE)
logger.info(f"Metadata saved to {Config.DEFAULT_OUTPUT_FILE}")
else:
logger.error(f"Default directory not found: {Config.DEFAULT_IMAGE_DIR}")
if __name__ == "__main__":
main()