File size: 13,793 Bytes
e8b7b46
5ba3ea1
 
 
 
 
 
 
e8b7b46
5ba3ea1
 
 
 
 
e8b7b46
5ba3ea1
 
 
e8b7b46
5ba3ea1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8b7b46
5ba3ea1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8b7b46
5ba3ea1
 
 
 
 
 
 
 
e8b7b46
 
5ba3ea1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389

import os
import io
import json
import logging
import base64
import traceback
from typing import Dict, List, Any, Optional, Tuple

import torch
import numpy as np
import gradio as gr
import folium
import requests

from geoclip import GeoCLIP, LocationEncoder
from transformers import CLIPTokenizer
from dataclasses import dataclass, asdict

class MetacognitiveAssistant:
    """
    Advanced multimodal AI assistant integrating GeoCLIP with metacognitive analysis framework.
    """
    
    def __init__(self, device=None):
        """
        Initialize the metacognitive assistant with GeoCLIP and advanced reasoning capabilities.
        
        Args:
            device (str, optional): Compute device for model. Defaults to CUDA if available.
        """
        # Device and model configuration
        self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
        
        # GeoCLIP components
        self.geoclip_model = GeoCLIP().to(self.device)
        self.tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
        self.location_encoder = LocationEncoder().to(self.device)
        
        # Caching and logging
        self._cache = {}
        self.logger = self._configure_logger()
        
        # Analytical frameworks
        self.analytical_frameworks = {
            "multi_perspective": self._multi_perspective_analysis,
            "semantic_excavation": self._semantic_excavation,
            "cross_domain_bridging": self._cross_domain_bridging
        }
        
        print(f"MetacognitiveAssistant initialized on {self.device}")
    
    def _configure_logger(self):
        """
        Configure a robust logging system with multiple output streams.
        
        Returns:
            logging.Logger: Configured logger instance
        """
        logger = logging.getLogger("MetacognitiveAssistant")
        logger.setLevel(logging.DEBUG)
        
        # Console handler
        console_handler = logging.StreamHandler()
        console_handler.setLevel(logging.INFO)
        console_formatter = logging.Formatter(
            '%(asctime)s - %(name)s - %(levelname)s: %(message)s',
            datefmt='%Y-%m-%d %H:%M:%S'
        )
        console_handler.setFormatter(console_formatter)
        logger.addHandler(console_handler)
        
        return logger
    
    def _multi_perspective_analysis(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
        """
        Apply multi-perspective analysis to input data.
        
        Args:
            input_data (Dict): Input data to analyze
        
        Returns:
            Dict with multi-perspective insights
        """
        perspectives = {
            "quantitative": self._quantitative_perspective,
            "semantic": self._semantic_perspective,
            "systemic": self._systemic_perspective
        }
        
        multi_perspective_results = {}
        for name, perspective_func in perspectives.items():
            try:
                multi_perspective_results[name] = perspective_func(input_data)
            except Exception as e:
                self.logger.warning(f"Error in {name} perspective: {e}")
        
        return multi_perspective_results
    
    def _quantitative_perspective(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
        """Quantitative analysis perspective."""
        # Implement quantitative analysis logic
        return {
            "metrics": {},
            "statistical_summary": {}
        }
    
    def _semantic_perspective(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
        """Semantic meaning extraction perspective."""
        # Implement semantic analysis logic
        return {
            "implied_narratives": [],
            "conceptual_themes": []
        }
    
    def _systemic_perspective(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
        """Systemic relationship and interaction perspective."""
        # Implement systemic analysis logic
        return {
            "system_interactions": {},
            "emergent_properties": []
        }
    
    def _semantic_excavation(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
        """
        Deep semantic excavation to extract profound meanings and implications.
        
        Args:
            input_data (Dict): Input data to excavate
        
        Returns:
            Dict with semantic insights
        """
        # Implement deep semantic analysis
        return {
            "causal_narratives": [],
            "hidden_implications": [],
            "generative_principles": []
        }
    
    def _cross_domain_bridging(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
        """
        Identify cross-domain pattern isomorphisms.
        
        Args:
            input_data (Dict): Input data to analyze
        
        Returns:
            Dict with cross-domain insights
        """
        # Implement cross-domain pattern recognition
        return {
            "analogous_patterns": [],
            "domain_bridges": [],
            "transferable_insights": []
        }
    
    def process_query(self, message: Dict[str, Any], history: List[Dict[str, Any]]) -> str:
        """
        Primary query processing method with advanced metacognitive reasoning.
        
        Args:
            message (Dict): Input message with potential multimodal data
            history (List): Conversation history
        
        Returns:
            str: Processed response with metacognitive analysis
        """
        try:
            # Preprocessing and input validation
            self.logger.info("Processing new query")
            
            # Route to appropriate processing based on input type
            if message.get("files") and len(message["files"]) > 0:
                # Multimodal image processing
                response = self._process_image_input(message["files"][0])
            elif message.get("text"):
                # Text-based processing
                response = self._process_text_input(message["text"])
            else:
                return "Invalid input. Please provide an image or text description."
            
            # Apply metacognitive analysis frameworks
            analysis_results = {}
            for framework_name, framework_func in self.analytical_frameworks.items():
                try:
                    analysis_results[framework_name] = framework_func({
                        "input": message,
                        "response": response
                    })
                except Exception as e:
                    self.logger.warning(f"Error in {framework_name} analysis: {e}")
            
            # Enhance response with metacognitive insights
            enhanced_response = self._generate_metacognitive_response(
                response, 
                analysis_results
            )
            
            return enhanced_response
        
        except Exception as e:
            error_details = traceback.format_exc()
            self.logger.error(f"Query processing error: {e}")
            return f"🚨 Error processing query:\n```\n{error_details}\n```"
    
    def _process_image_input(self, image_path: str) -> str:
        """
        Process image input using GeoCLIP location predictions.
        
        Args:
            image_path (str): Path to input image
        
        Returns:
            str: Processed image analysis response
        """
        predictions = self.predict_from_image(image_path)
        
        response = "### Image Location Analysis\n\n"
        for i, pred in enumerate(predictions[:3]):
            lat, lon = pred.coordinates
            conf = pred.confidence * 100
            response += f"**#{i+1}:** Coordinates: ({lat:.6f}, {lon:.6f}) - Confidence: {conf:.2f}%\n\n"
        
        # Generate static map
        map_html = self.generate_static_map(predictions)
        response += f"<iframe srcdoc='{map_html}' width='100%' height='400px' frameborder='0'></iframe>"
        
        return response
    
    def _process_text_input(self, text_query: str) -> str:
        """
        Process text input with advanced reasoning.
        
        Args:
            text_query (str): Input text query
        
        Returns:
            str: Processed text analysis response
        """
        # Existing text-based location prediction
        predictions = self.predict_from_text(text_query)
        
        response = f"### Location Predictions for: '{text_query}'\n\n"
        for i, pred in enumerate(predictions[:3]):
            lat, lon = pred.coordinates
            conf = pred.confidence * 100
            response += f"**#{i+1}:** Coordinates: ({lat:.6f}, {lon:.6f}) - Confidence: {conf:.2f}%\n\n"
        
        # Generate static map
        map_html = self.generate_static_map(predictions)
        response += f"<iframe srcdoc='{map_html}' width='100%' height='400px' frameborder='0'></iframe>"
        
        return response
    
    def _generate_metacognitive_response(
        self, 
        base_response: str, 
        analysis_results: Dict[str, Any]
    ) -> str:
        """
        Enhance response with metacognitive analysis insights.
        
        Args:
            base_response (str): Original response
            analysis_results (Dict): Metacognitive analysis results
        
        Returns:
            str: Enhanced response with metacognitive insights
        """
        metacognitive_insights = "### 🧠 Metacognitive Analysis\n\n"
        
        for framework, insights in analysis_results.items():
            metacognitive_insights += f"#### {framework.replace('_', ' ').title()} Framework\n"
            
            # Summarize insights with fallback to prevent errors
            try:
                for key, value in insights.items():
                    if value:  # Only include non-empty insights
                        metacognitive_insights += f"- **{key.replace('_', ' ').title()}**: {value}\n"
            except Exception as e:
                self.logger.warning(f"Error generating {framework} insights: {e}")
        
        # Combine base response with metacognitive insights
        full_response = base_response + "\n\n" + metacognitive_insights
        
        return full_response
    
    # Existing GeoCLIP methods from previous implementation
    def predict_from_image(self, image_path) -> List[Dict]:
        """Existing image prediction method"""
        top_pred_gps, top_pred_prob = self.geoclip_model.predict(image_path, top_k=5)
        return [
            {
                "coordinates": tuple(top_pred_gps[i].cpu().numpy()), 
                "confidence": float(top_pred_prob[i])
            } 
            for i in range(len(top_pred_prob))
        ]
    
    def predict_from_text(self, text: str, top_k: int = 5) -> List[Dict]:
        """Existing text-based prediction method"""
        # (Implement similar to previous implementation)
        cache_key = f"text_{text}_{top_k}"
        if cache_key in self._cache:
            return self._cache[cache_key]
        
        with torch.no_grad():
            # Similar implementation to previous GeoCLIP text prediction
            inputs = self.tokenizer(text, return_tensors="pt").to(self.device)
            # ... rest of the prediction logic ...
        
        return []  # Placeholder
    
    def generate_static_map(self, predictions: List[Dict]) -> str:
        """Generate static map from predictions"""
        if not predictions:
            return ""
        
        center_coords = predictions[0]["coordinates"]
        m = folium.Map(location=center_coords, zoom_start=5)
        
        for i, pred in enumerate(predictions[:5]):
            color = 'red' if i == 0 else 'blue' if i == 1 else 'green'
            folium.Marker(
                location=pred["coordinates"],
                popup=f"#{i+1}: {pred['confidence']:.4f}",
                icon=folium.Icon(color=color)
            ).add_to(m)
        
        return m.get_root().render()

# Gradio Interface
def create_metacognitive_interface():
    """
    Create advanced Gradio interface for Metacognitive AI Assistant
    """
    assistant = MetacognitiveAssistant()
    
    with gr.Blocks(theme=gr.themes.Default()) as demo:
        gr.Markdown("# 🧠 Metacognitive AI Location Intelligence")
        gr.Markdown("""
        An advanced AI assistant that combines geospatial intelligence 
        with deep metacognitive reasoning and analysis.
        
        - Upload an image or describe a location
        - Receive location predictions and deep analytical insights
        """)
        
        chatbot = gr.Chatbot(
            bubble_full_width=False,
            height=600,
            type="messages",
            avatar_images=("πŸ‘€", "🌍"),
            layout="panel"
        )
        
        chat_interface = gr.ChatInterface(
            fn=assistant.process_query,
            chatbot=chatbot,
            multimodal=True,
            textbox=gr.MultimodalTextbox(
                placeholder="Describe a location, upload an image...",
                sources=["upload"],
                file_types=["image"],
                show_label=False
            ),
            autofocus=True,
            submit_btn="Analyze",
            examples=[
                "Describe a tropical beach landscape",
                "Urban cityscape with modern architecture"
            ]
        )
    
    return demo

def main():
    """Launch the Metacognitive AI Assistant"""
    demo = create_metacognitive_interface()
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False
    )

if __name__ == "__main__":
    main()