Spaces:
Runtime error
Runtime error
File size: 13,793 Bytes
e8b7b46 5ba3ea1 e8b7b46 5ba3ea1 e8b7b46 5ba3ea1 e8b7b46 5ba3ea1 e8b7b46 5ba3ea1 e8b7b46 5ba3ea1 e8b7b46 5ba3ea1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 |
import os
import io
import json
import logging
import base64
import traceback
from typing import Dict, List, Any, Optional, Tuple
import torch
import numpy as np
import gradio as gr
import folium
import requests
from geoclip import GeoCLIP, LocationEncoder
from transformers import CLIPTokenizer
from dataclasses import dataclass, asdict
class MetacognitiveAssistant:
"""
Advanced multimodal AI assistant integrating GeoCLIP with metacognitive analysis framework.
"""
def __init__(self, device=None):
"""
Initialize the metacognitive assistant with GeoCLIP and advanced reasoning capabilities.
Args:
device (str, optional): Compute device for model. Defaults to CUDA if available.
"""
# Device and model configuration
self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
# GeoCLIP components
self.geoclip_model = GeoCLIP().to(self.device)
self.tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
self.location_encoder = LocationEncoder().to(self.device)
# Caching and logging
self._cache = {}
self.logger = self._configure_logger()
# Analytical frameworks
self.analytical_frameworks = {
"multi_perspective": self._multi_perspective_analysis,
"semantic_excavation": self._semantic_excavation,
"cross_domain_bridging": self._cross_domain_bridging
}
print(f"MetacognitiveAssistant initialized on {self.device}")
def _configure_logger(self):
"""
Configure a robust logging system with multiple output streams.
Returns:
logging.Logger: Configured logger instance
"""
logger = logging.getLogger("MetacognitiveAssistant")
logger.setLevel(logging.DEBUG)
# Console handler
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.INFO)
console_formatter = logging.Formatter(
'%(asctime)s - %(name)s - %(levelname)s: %(message)s',
datefmt='%Y-%m-%d %H:%M:%S'
)
console_handler.setFormatter(console_formatter)
logger.addHandler(console_handler)
return logger
def _multi_perspective_analysis(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
"""
Apply multi-perspective analysis to input data.
Args:
input_data (Dict): Input data to analyze
Returns:
Dict with multi-perspective insights
"""
perspectives = {
"quantitative": self._quantitative_perspective,
"semantic": self._semantic_perspective,
"systemic": self._systemic_perspective
}
multi_perspective_results = {}
for name, perspective_func in perspectives.items():
try:
multi_perspective_results[name] = perspective_func(input_data)
except Exception as e:
self.logger.warning(f"Error in {name} perspective: {e}")
return multi_perspective_results
def _quantitative_perspective(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
"""Quantitative analysis perspective."""
# Implement quantitative analysis logic
return {
"metrics": {},
"statistical_summary": {}
}
def _semantic_perspective(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
"""Semantic meaning extraction perspective."""
# Implement semantic analysis logic
return {
"implied_narratives": [],
"conceptual_themes": []
}
def _systemic_perspective(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
"""Systemic relationship and interaction perspective."""
# Implement systemic analysis logic
return {
"system_interactions": {},
"emergent_properties": []
}
def _semantic_excavation(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
"""
Deep semantic excavation to extract profound meanings and implications.
Args:
input_data (Dict): Input data to excavate
Returns:
Dict with semantic insights
"""
# Implement deep semantic analysis
return {
"causal_narratives": [],
"hidden_implications": [],
"generative_principles": []
}
def _cross_domain_bridging(self, input_data: Dict[str, Any]) -> Dict[str, Any]:
"""
Identify cross-domain pattern isomorphisms.
Args:
input_data (Dict): Input data to analyze
Returns:
Dict with cross-domain insights
"""
# Implement cross-domain pattern recognition
return {
"analogous_patterns": [],
"domain_bridges": [],
"transferable_insights": []
}
def process_query(self, message: Dict[str, Any], history: List[Dict[str, Any]]) -> str:
"""
Primary query processing method with advanced metacognitive reasoning.
Args:
message (Dict): Input message with potential multimodal data
history (List): Conversation history
Returns:
str: Processed response with metacognitive analysis
"""
try:
# Preprocessing and input validation
self.logger.info("Processing new query")
# Route to appropriate processing based on input type
if message.get("files") and len(message["files"]) > 0:
# Multimodal image processing
response = self._process_image_input(message["files"][0])
elif message.get("text"):
# Text-based processing
response = self._process_text_input(message["text"])
else:
return "Invalid input. Please provide an image or text description."
# Apply metacognitive analysis frameworks
analysis_results = {}
for framework_name, framework_func in self.analytical_frameworks.items():
try:
analysis_results[framework_name] = framework_func({
"input": message,
"response": response
})
except Exception as e:
self.logger.warning(f"Error in {framework_name} analysis: {e}")
# Enhance response with metacognitive insights
enhanced_response = self._generate_metacognitive_response(
response,
analysis_results
)
return enhanced_response
except Exception as e:
error_details = traceback.format_exc()
self.logger.error(f"Query processing error: {e}")
return f"π¨ Error processing query:\n```\n{error_details}\n```"
def _process_image_input(self, image_path: str) -> str:
"""
Process image input using GeoCLIP location predictions.
Args:
image_path (str): Path to input image
Returns:
str: Processed image analysis response
"""
predictions = self.predict_from_image(image_path)
response = "### Image Location Analysis\n\n"
for i, pred in enumerate(predictions[:3]):
lat, lon = pred.coordinates
conf = pred.confidence * 100
response += f"**#{i+1}:** Coordinates: ({lat:.6f}, {lon:.6f}) - Confidence: {conf:.2f}%\n\n"
# Generate static map
map_html = self.generate_static_map(predictions)
response += f"<iframe srcdoc='{map_html}' width='100%' height='400px' frameborder='0'></iframe>"
return response
def _process_text_input(self, text_query: str) -> str:
"""
Process text input with advanced reasoning.
Args:
text_query (str): Input text query
Returns:
str: Processed text analysis response
"""
# Existing text-based location prediction
predictions = self.predict_from_text(text_query)
response = f"### Location Predictions for: '{text_query}'\n\n"
for i, pred in enumerate(predictions[:3]):
lat, lon = pred.coordinates
conf = pred.confidence * 100
response += f"**#{i+1}:** Coordinates: ({lat:.6f}, {lon:.6f}) - Confidence: {conf:.2f}%\n\n"
# Generate static map
map_html = self.generate_static_map(predictions)
response += f"<iframe srcdoc='{map_html}' width='100%' height='400px' frameborder='0'></iframe>"
return response
def _generate_metacognitive_response(
self,
base_response: str,
analysis_results: Dict[str, Any]
) -> str:
"""
Enhance response with metacognitive analysis insights.
Args:
base_response (str): Original response
analysis_results (Dict): Metacognitive analysis results
Returns:
str: Enhanced response with metacognitive insights
"""
metacognitive_insights = "### π§ Metacognitive Analysis\n\n"
for framework, insights in analysis_results.items():
metacognitive_insights += f"#### {framework.replace('_', ' ').title()} Framework\n"
# Summarize insights with fallback to prevent errors
try:
for key, value in insights.items():
if value: # Only include non-empty insights
metacognitive_insights += f"- **{key.replace('_', ' ').title()}**: {value}\n"
except Exception as e:
self.logger.warning(f"Error generating {framework} insights: {e}")
# Combine base response with metacognitive insights
full_response = base_response + "\n\n" + metacognitive_insights
return full_response
# Existing GeoCLIP methods from previous implementation
def predict_from_image(self, image_path) -> List[Dict]:
"""Existing image prediction method"""
top_pred_gps, top_pred_prob = self.geoclip_model.predict(image_path, top_k=5)
return [
{
"coordinates": tuple(top_pred_gps[i].cpu().numpy()),
"confidence": float(top_pred_prob[i])
}
for i in range(len(top_pred_prob))
]
def predict_from_text(self, text: str, top_k: int = 5) -> List[Dict]:
"""Existing text-based prediction method"""
# (Implement similar to previous implementation)
cache_key = f"text_{text}_{top_k}"
if cache_key in self._cache:
return self._cache[cache_key]
with torch.no_grad():
# Similar implementation to previous GeoCLIP text prediction
inputs = self.tokenizer(text, return_tensors="pt").to(self.device)
# ... rest of the prediction logic ...
return [] # Placeholder
def generate_static_map(self, predictions: List[Dict]) -> str:
"""Generate static map from predictions"""
if not predictions:
return ""
center_coords = predictions[0]["coordinates"]
m = folium.Map(location=center_coords, zoom_start=5)
for i, pred in enumerate(predictions[:5]):
color = 'red' if i == 0 else 'blue' if i == 1 else 'green'
folium.Marker(
location=pred["coordinates"],
popup=f"#{i+1}: {pred['confidence']:.4f}",
icon=folium.Icon(color=color)
).add_to(m)
return m.get_root().render()
# Gradio Interface
def create_metacognitive_interface():
"""
Create advanced Gradio interface for Metacognitive AI Assistant
"""
assistant = MetacognitiveAssistant()
with gr.Blocks(theme=gr.themes.Default()) as demo:
gr.Markdown("# π§ Metacognitive AI Location Intelligence")
gr.Markdown("""
An advanced AI assistant that combines geospatial intelligence
with deep metacognitive reasoning and analysis.
- Upload an image or describe a location
- Receive location predictions and deep analytical insights
""")
chatbot = gr.Chatbot(
bubble_full_width=False,
height=600,
type="messages",
avatar_images=("π€", "π"),
layout="panel"
)
chat_interface = gr.ChatInterface(
fn=assistant.process_query,
chatbot=chatbot,
multimodal=True,
textbox=gr.MultimodalTextbox(
placeholder="Describe a location, upload an image...",
sources=["upload"],
file_types=["image"],
show_label=False
),
autofocus=True,
submit_btn="Analyze",
examples=[
"Describe a tropical beach landscape",
"Urban cityscape with modern architecture"
]
)
return demo
def main():
"""Launch the Metacognitive AI Assistant"""
demo = create_metacognitive_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False
)
if __name__ == "__main__":
main()
|