legacy107's picture
Update app.py
81d062a
import gradio as gr
from gradio.components import Textbox
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, T5ForConditionalGeneration
from peft import PeftModel
import torch
import datasets
from sentence_transformers import SentenceTransformer, util
import math
import re
from nltk import sent_tokenize, word_tokenize
import nltk
nltk.download('punkt')
# Load bi encoder
bi_encoder = SentenceTransformer('legacy107/multi-qa-mpnet-base-dot-v1-wikipedia-search')
bi_encoder.max_seq_length = 256
top_k = 3
# Load your fine-tuned model and tokenizer
model_name = "legacy107/flan-t5-large-ia3-wiki2-100-merged"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = T5ForConditionalGeneration.from_pretrained(model_name)
max_length = 512
max_target_length = 200
# Load your dataset
dataset = datasets.load_dataset("legacy107/qa_wikipedia_retrieved_chunks", split="test")
dataset = dataset.shuffle()
dataset = dataset.select(range(10))
# Context chunking
def chunk_splitter(context, chunk_size=100, overlap=0.20):
overlap_size = chunk_size * overlap
sentences = nltk.sent_tokenize(context)
chunks = []
text = sentences[0]
if len(sentences) == 1:
chunks.append(text)
i = 1
while i < len(sentences):
text += " " + sentences[i]
i += 1
while i < len(sentences) and len(nltk.word_tokenize(f"{text} {sentences[i]}")) <= chunk_size:
text += " " + sentences[i]
i += 1
text = text.replace('\"','"').replace("\'","'").replace('\n\n\n'," ").replace('\n\n'," ").replace('\n'," ")
chunks.append(text)
if (i >= len(sentences)):
break
j = i - 1
text = sentences[j]
while j >= 0 and len(nltk.word_tokenize(f"{sentences[j]} {text}")) <= overlap_size:
text = sentences[j] + " " + text
j -= 1
return chunks
def retrieve_context(query, contexts):
corpus_embeddings = bi_encoder.encode(contexts, convert_to_tensor=True, show_progress_bar=False)
question_embedding = bi_encoder.encode(query, convert_to_tensor=True, show_progress_bar=False)
question_embedding = question_embedding
hits = util.semantic_search(question_embedding, corpus_embeddings, top_k=top_k)
hits = hits[0]
hits = sorted(hits, key=lambda x: x['score'], reverse=True)
return " ".join([contexts[hit['corpus_id']] for hit in hits[0:top_k]]).replace("\n", " ")
# Define your function to generate answers
def generate_answer(question, context, title, ground):
contexts = chunk_splitter(context)
context = retrieve_context(question, contexts)
# Combine question and context
input_text = f"question: {question} context: {context}"
# Tokenize the input text
input_ids = tokenizer(
input_text,
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=max_length,
).input_ids
# Generate the answer
with torch.no_grad():
generated_ids = model.generate(input_ids=input_ids, max_new_tokens=max_target_length)
# Decode and return the generated answer
generated_answer = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
return generated_answer, context
# Define a function to list examples from the dataset
def list_examples():
examples = []
for example in dataset:
context = example["article"]
question = example["question"]
answer = example["answer"]
title = example["title"]
examples.append([question, context, title, answer])
return examples
# Create a Gradio interface
iface = gr.Interface(
fn=generate_answer,
inputs=[
Textbox(label="Question"),
Textbox(label="Context"),
Textbox(label="Article title"),
Textbox(label="Ground truth")
],
outputs=[
Textbox(label="Generated Answer"),
Textbox(label="Retrieved Context")
],
examples=list_examples()
)
# Launch the Gradio interface
iface.launch()