Spaces:
Runtime error
Runtime error
import gradio as gr | |
from gradio.components import Textbox | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, T5ForConditionalGeneration | |
from peft import PeftModel | |
import torch | |
import datasets | |
from sentence_transformers import SentenceTransformer, util | |
import math | |
import re | |
from nltk import sent_tokenize, word_tokenize | |
import nltk | |
nltk.download('punkt') | |
# Load bi encoder | |
bi_encoder = SentenceTransformer('legacy107/multi-qa-mpnet-base-dot-v1-wikipedia-search') | |
bi_encoder.max_seq_length = 256 | |
top_k = 3 | |
# Load your fine-tuned model and tokenizer | |
model_name = "legacy107/flan-t5-large-ia3-wiki2-100-merged" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = T5ForConditionalGeneration.from_pretrained(model_name) | |
max_length = 512 | |
max_target_length = 200 | |
# Load your dataset | |
dataset = datasets.load_dataset("legacy107/qa_wikipedia_retrieved_chunks", split="test") | |
dataset = dataset.shuffle() | |
dataset = dataset.select(range(10)) | |
# Context chunking | |
def chunk_splitter(context, chunk_size=100, overlap=0.20): | |
overlap_size = chunk_size * overlap | |
sentences = nltk.sent_tokenize(context) | |
chunks = [] | |
text = sentences[0] | |
if len(sentences) == 1: | |
chunks.append(text) | |
i = 1 | |
while i < len(sentences): | |
text += " " + sentences[i] | |
i += 1 | |
while i < len(sentences) and len(nltk.word_tokenize(f"{text} {sentences[i]}")) <= chunk_size: | |
text += " " + sentences[i] | |
i += 1 | |
text = text.replace('\"','"').replace("\'","'").replace('\n\n\n'," ").replace('\n\n'," ").replace('\n'," ") | |
chunks.append(text) | |
if (i >= len(sentences)): | |
break | |
j = i - 1 | |
text = sentences[j] | |
while j >= 0 and len(nltk.word_tokenize(f"{sentences[j]} {text}")) <= overlap_size: | |
text = sentences[j] + " " + text | |
j -= 1 | |
return chunks | |
def retrieve_context(query, contexts): | |
corpus_embeddings = bi_encoder.encode(contexts, convert_to_tensor=True, show_progress_bar=False) | |
question_embedding = bi_encoder.encode(query, convert_to_tensor=True, show_progress_bar=False) | |
question_embedding = question_embedding | |
hits = util.semantic_search(question_embedding, corpus_embeddings, top_k=top_k) | |
hits = hits[0] | |
hits = sorted(hits, key=lambda x: x['score'], reverse=True) | |
return " ".join([contexts[hit['corpus_id']] for hit in hits[0:top_k]]).replace("\n", " ") | |
# Define your function to generate answers | |
def generate_answer(question, context, title, ground): | |
contexts = chunk_splitter(context) | |
context = retrieve_context(question, contexts) | |
# Combine question and context | |
input_text = f"question: {question} context: {context}" | |
# Tokenize the input text | |
input_ids = tokenizer( | |
input_text, | |
return_tensors="pt", | |
padding="max_length", | |
truncation=True, | |
max_length=max_length, | |
).input_ids | |
# Generate the answer | |
with torch.no_grad(): | |
generated_ids = model.generate(input_ids=input_ids, max_new_tokens=max_target_length) | |
# Decode and return the generated answer | |
generated_answer = tokenizer.decode(generated_ids[0], skip_special_tokens=True) | |
return generated_answer, context | |
# Define a function to list examples from the dataset | |
def list_examples(): | |
examples = [] | |
for example in dataset: | |
context = example["article"] | |
question = example["question"] | |
answer = example["answer"] | |
title = example["title"] | |
examples.append([question, context, title, answer]) | |
return examples | |
# Create a Gradio interface | |
iface = gr.Interface( | |
fn=generate_answer, | |
inputs=[ | |
Textbox(label="Question"), | |
Textbox(label="Context"), | |
Textbox(label="Article title"), | |
Textbox(label="Ground truth") | |
], | |
outputs=[ | |
Textbox(label="Generated Answer"), | |
Textbox(label="Retrieved Context") | |
], | |
examples=list_examples() | |
) | |
# Launch the Gradio interface | |
iface.launch() |