Spaces:
Sleeping
Sleeping
# Action | |
Actions, also called **tools**, provide a suite of functions LLM-driven agents can use to interact with the real world and perform complex tasks. | |
## Basic Concepts | |
### Tool & Toolkit | |
There are two categories of tools: | |
- tool: provide only one API to call. | |
- toolkit: implement multiple APIs that undertake different sub-tasks. | |
### Tool Description | |
In Lagent, the tool description is a dictionary containing the action's core information of usage, observed by LLMs for decision-making. | |
For simple tools, the description can be created as follows | |
```python | |
TOOL_DESCRIPTION = { | |
'name': 'bold', # name of the tool | |
'description': 'a function used to make text bold', # introduce the tool's function | |
'parameters': [ # a list of parameters the tool take. | |
{ | |
'name': 'text', 'type': 'STRING', 'description': 'input content' | |
} | |
], | |
'required': ['text'], # specify names of parameters required | |
} | |
``` | |
In some situations there may be optional `return_data`, `parameter_description` keys describing the returns and argument passing format respectively. | |
```{attention} | |
`parameter_description` is usually inserted into the tool description automatically by the action's parser. It will be introduced in [Interface Design](#interface-design) . | |
``` | |
For toolkits, the description is very similar but nest submethods | |
```python | |
TOOL_DESCRIPTION = { | |
'name': 'PhraseEmphasis', # name of the toolkit | |
'description': 'a toolkit which provides different styles of text emphasis', # introduce the tool's function | |
'api_list': [ | |
{ | |
'name': 'bold', | |
'description': 'make text bold', | |
'parameters': [ | |
{ | |
'name': 'text', 'type': 'STRING', 'description': 'input content' | |
} | |
], | |
'required': ['text'] | |
}, | |
{ | |
'name': 'italic', | |
'description': 'make text italic', | |
'parameters': [ | |
{ | |
'name': 'text', 'type': 'STRING', 'description': 'input content' | |
} | |
], | |
'required': ['text'] | |
} | |
] | |
} | |
``` | |
## Make Functions Tools | |
It's not necessary to prepare an extra description for a defined function. In Lagent we provide a decorator `tool_api` which can conveniently turn a function into a tool by automatically parsing the function's typehints and dosctrings to generate the description dictionary and binding it to an attribute `api_description`. | |
```python | |
from lagent import tool_api | |
@tool_api | |
def bold(text: str) -> str: | |
"""make text bold | |
Args: | |
text (str): input text | |
Returns: | |
str: bold text | |
""" | |
return '**' + text + '**' | |
bold.api_description | |
``` | |
```python | |
{'name': 'bold', | |
'description': 'make text bold', | |
'parameters': [{'name': 'text', | |
'type': 'STRING', | |
'description': 'input text'}], | |
'required': ['text']} | |
``` | |
Once `returns_named_value` is enabled you should declare the name of the return data, which will be processed to form a new field `return_data`: | |
```python | |
@tool_api(returns_named_value=True) | |
def bold(text: str) -> str: | |
"""make text bold | |
Args: | |
text (str): input text | |
Returns: | |
bold_text (str): bold text | |
""" | |
return '**' + text + '**' | |
bold.api_description | |
``` | |
```python | |
{'name': 'bold', | |
'description': 'make text bold', | |
'parameters': [{'name': 'text', | |
'type': 'STRING', | |
'description': 'input text'}], | |
'required': ['text'], | |
'return_data': [{'name': 'bold_text', | |
'description': 'bold text', | |
'type': 'STRING'}]} | |
``` | |
Sometimes the tool may return a `dict` or `tuple`, and you want to elaborate each member in `return_data` rather than take them as a whole. Set `explode_return=True` and list them in the return part of docstrings. | |
```python | |
@tool_api(explode_return=True) | |
def list_args(a: str, b: int, c: float = 0.0) -> dict: | |
"""Return arguments in dict format | |
Args: | |
a (str): a | |
b (int): b | |
c (float): c | |
Returns: | |
dict: input arguments | |
- a (str): a | |
- b (int): b | |
- c: c | |
""" | |
return {'a': a, 'b': b, 'c': c} | |
``` | |
```python | |
{'name': 'list_args', | |
'description': 'Return arguments in dict format', | |
'parameters': [{'name': 'a', 'type': 'STRING', 'description': 'a'}, | |
{'name': 'b', 'type': 'NUMBER', 'description': 'b'}, | |
{'name': 'c', 'type': 'FLOAT', 'description': 'c'}], | |
'required': ['a', 'b'], | |
'return_data': [{'name': 'a', 'description': 'a', 'type': 'STRING'}, | |
{'name': 'b', 'description': 'b', 'type': 'NUMBER'}, | |
{'name': 'c', 'description': 'c'}]} | |
``` | |
```{warning} | |
Only Google style Python docstrings is currently supported. | |
``` | |
## Interface Design | |
`BaseAction(description=None, parser=JsonParser, enable=True)` is the base class all actions should inherit from. It takes three initialization arguments | |
- **description**: a tool description dictionary, used set instance attribute `description`. Mostly you don't need explicitly pass this argument since the meta class of `BaseAction` will search methods decorated by `tool_api` and assemble their `api_description` as a class attribute `__tool_description__`, and if the initial `description` is left null, then `__tool_description__` will be copied as `description`. | |
- **parser**: `BaseParser` class. It will instantialize a parser used to validate the arguments of APIs in `description`. | |
For example, `JsonParser` requires arguments passed in the format of JSON or `dict`. To make LLMs aware of this, It inserts a field `parameter_description` into the `description`. | |
```python | |
from lagent import BaseAction | |
action = BaseAction( | |
{ | |
'name': 'bold', | |
'description': 'a function used to make text bold', | |
'parameters': [ | |
{ | |
'name': 'text', 'type': 'STRING', 'description': 'input content' | |
} | |
], | |
'required': ['text'] | |
} | |
) | |
action.description | |
``` | |
```python | |
{'name': 'bold', | |
'description': 'a function used to make text bold', | |
'parameters': [{'name': 'text', | |
'type': 'STRING', | |
'description': 'input content'}], | |
'required': ['text'], | |
'parameter_description': '如果调用该工具,你必须使用Json格式 {key: value} 传参,其中key为参数名称'} | |
``` | |
- **enable**: specify whether the tool is available. | |
### Custom Action | |
A simple tool must have its `run` method implemented, while APIs of toolkits should avoid naming conflicts with this reserved word. | |
```{tip} | |
`run` is allowed not to be decorated by `tool_api` for simple tools unless you want to hint the return data. | |
``` | |
```python | |
class Bold(BaseAction): | |
def run(self, text: str): | |
"""make text bold | |
Args: | |
text (str): input text | |
Returns: | |
str: bold text | |
""" | |
return '**' + text + '**' | |
class PhraseEmphasis(BaseAction): | |
"""a toolkit which provides different styles of text emphasis""" | |
@tool_api | |
def bold(self, text): | |
"""make text bold | |
Args: | |
text (str): input text | |
Returns: | |
str: bold text | |
""" | |
return '**' + text + '**' | |
@tool_api | |
def italic(self, text): | |
"""make text italic | |
Args: | |
text (str): input text | |
Returns: | |
str: italic text | |
""" | |
return '*' + text + '*' | |
# Inspect the default description | |
# Bold.__tool_description__, PhraseEmphasis.__tool_description__ | |
``` | |
### Auto-registration | |
Any subclass of `BaseAction` will be registered automatically. You can use `list_tools()` and `get_tool()` to view all tools and initialize by name. | |
```python | |
from lagent import list_tools, get_tool | |
list_tools() | |
``` | |
```python | |
['BaseAction', | |
'InvalidAction', | |
'NoAction', | |
'FinishAction', | |
'ArxivSearch', | |
'BINGMap', | |
'GoogleScholar', | |
'GoogleSearch', | |
'IPythonInterpreter', | |
'PPT', | |
'PythonInterpreter', | |
'Bold', | |
'PhraseEmphasis'] | |
``` | |
Create a `PhraseEmphasis` object | |
```python | |
action = get_tool('PhraseEmphasis') | |
action.description | |
``` | |
```python | |
{'name': 'PhraseEmphasis', | |
'description': 'a toolkit which provides different styles of text emphasis', | |
'api_list': [{'name': 'bold', | |
'description': 'make text bold', | |
'parameters': [{'name': 'text', | |
'type': 'STRING', | |
'description': 'input text'}], | |
'required': ['text'], | |
'parameter_description': '如果调用该工具,你必须使用Json格式 {key: value} 传参,其中key为参数名称'}, | |
{'name': 'italic', | |
'description': 'make text italic', | |
'parameters': [{'name': 'text', | |
'type': 'STRING', | |
'description': 'input text'}], | |
'required': ['text'], | |
'parameter_description': '如果调用该工具,你必须使用Json格式 {key: value} 传参,其中key为参数名称'}]} | |
``` | |
## Tool Calling | |
### Run a Tool | |
`__call__` method of `Action` takes two arguments | |
- `inputs`: It depends on the action's parser. Often a string in specific formats generated by LLMs. | |
- `JsonParser`: Allow passing arguments in the format of JSON string or Python `dict`. | |
- `TupleParser`: Allow passing arguments in the format of tuple string format or Python `tuple`. | |
- `name`: Which API to call. Default is `run`. | |
It returns an `ActionReturn` object which encapsulates calling details | |
- `args`: Dictionary of action inputs. | |
- `type`: Action name. | |
- `result`: List of dicts. Each contains two keys: 'type' and 'content'. when errors occur, it is `None`. | |
- `errmsg`: Error message. Default is `None`. | |
Below is an example | |
```python | |
from lagent import IPythonInterpreter, TupleParser | |
action1 = IPythonInterpreter() | |
ret = action1('{"command": "import math;math.sqrt(100)"}') | |
print(ret.result) | |
ret = action1({'command': 'import math;math.sqrt(100)'}) | |
print(ret.result) | |
action2 = IPythonInterpreter(parser=TupleParser) | |
ret = action2('("import math;math.sqrt(100)", )') | |
print(ret.result) | |
ret = action2(('import math;math.sqrt(100)',)) | |
print(ret.result) | |
``` | |
```python | |
[{'type': 'text', 'content': '10.0'}] | |
[{'type': 'text', 'content': '10.0'}] | |
[{'type': 'text', 'content': '10.0'}] | |
[{'type': 'text', 'content': '10.0'}] | |
``` | |
### Dynamic Invocation | |
Lagent provides an `ActionExecutor` to manage multiple tools. It will flatten `api_list` of toolkits and rename each `{tool_name}.{api_name}`. | |
```python | |
from lagent import ActionExecutor, ArxivSearch, IPythonInterpreter | |
executor = ActionExecutor(actions=[ArxivSearch(), IPythonInterpreter()]) | |
executor.get_actions_info() # This information is fed to LLMs as the tool meta prompt | |
``` | |
```python | |
[{'name': 'ArxivSearch.get_arxiv_article_information', | |
'description': 'Run Arxiv search and get the article meta information.', | |
'parameters': [{'name': 'query', | |
'type': 'STRING', | |
'description': 'the content of search query'}], | |
'required': ['query'], | |
'return_data': [{'name': 'content', | |
'description': 'a list of 3 arxiv search papers', | |
'type': 'STRING'}], | |
'parameter_description': '如果调用该工具,你必须使用Json格式 {key: value} 传参,其中key为参数名称'}, | |
{'name': 'IPythonInterpreter', | |
'description': "When you send a message containing Python code to python, it will be executed in a stateful Jupyter notebook environment. python will respond with the output of the execution or time out after 60.0 seconds. The drive at '/mnt/data' can be used to save and persist user files. Internet access for this session is disabled. Do not make external web requests or API calls as they will fail.", | |
'parameters': [{'name': 'command', | |
'type': 'STRING', | |
'description': 'Python code'}, | |
{'name': 'timeout', | |
'type': 'NUMBER', | |
'description': 'Upper bound of waiting time for Python script execution.'}], | |
'required': ['command'], | |
'parameter_description': '如果调用该工具,你必须使用Json格式 {key: value} 传参,其中key为参数名称'}] | |
``` | |
Trigger an action through the executor | |
```python | |
ret = executor('IPythonInterpreter', '{"command": "import math;math.sqrt(100)"}') | |
ret.result | |
``` | |
```python | |
[{'type': 'text', 'content': '10.0'}] | |
``` | |