File size: 2,494 Bytes
4a8e930
 
42fa7ec
ec42e29
42fa7ec
14e27af
 
4a8e930
 
 
14e27af
c02063c
ec42e29
2428a43
 
 
 
 
 
 
 
 
 
 
 
 
 
ec42e29
14e27af
ec42e29
 
 
14e27af
ec42e29
14e27af
c02063c
 
2428a43
 
c02063c
 
 
 
2428a43
 
c02063c
2428a43
 
c02063c
2428a43
 
c02063c
2428a43
 
c02063c
2428a43
 
 
14e27af
42fa7ec
a8f168f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import os
import pip
import gradio as gr
from PIL import Image

from backend import Infer


DEBUG = False

infer = Infer(DEBUG)
example_image_path = ["assets/example_1.jpg", "assets/example_2.jpg", "assets/example_3.jpg"]

outputs = [
    gr.Image(label="Thumb"),
    gr.Number(label="DeepNAPSI Thumb", precision=0),
    gr.Image(label="Index"),
    gr.Number(label="DeepNAPSI Index", precision=0),
    gr.Image(label="Middle"),
    gr.Number(label="DeepNAPSI Middle", precision=0),
    gr.Image(label="Ring"),
    gr.Number(label="DeepNAPSI Ring", precision=0),
    gr.Image(label="Pinky"),
    gr.Number(label="DeepNAPSI Pinky", precision=0),
    gr.Number(label="DeepNAPSI Sum", precision=0),
]

with gr.Blocks(analytics_enabled=False, title="DeepNAPSI") as demo:
    with gr.Column():
        gr.Markdown("## Welcome to the DeepNAPSI application!")
        gr.Markdown("Upload an image of the one hand and click **Predict NAPSI** to see the output.\n" \
                    "> Note: Make sure there are no identifying information present in the image. The prediction can take up to 1 minute.")
        with gr.Column():
            with gr.Row():
                with gr.Column():
                    with gr.Row():
                        image_input = gr.Image()
                        example_images = gr.Examples(example_image_path, image_input, outputs,
                                    fn=infer.predict, cache_examples=True)
                    with gr.Row():
                        image_button = gr.Button("Predict NAPSI")
                    with gr.Row():
                        with gr.Column():
                            outputs[0].render()
                            outputs[1].render()
                        with gr.Column():
                            outputs[2].render()
                            outputs[3].render()
                        with gr.Column():
                            outputs[4].render()
                            outputs[5].render()
                        with gr.Column():
                            outputs[6].render()
                            outputs[7].render()
                        with gr.Column():
                            outputs[8].render()
                            outputs[9].render()
                        outputs[10].render()
        image_button.click(infer.predict, inputs=image_input, outputs=outputs)

demo.launch(share=True if DEBUG else False, enable_queue=True, favicon_path="assets/favicon-32x32.png")