hz2475's picture
init
72f684c
from PIL import Image
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
import numpy as np
import matplotlib.pyplot as plt
from bs4 import BeautifulSoup
import re
from svgpathtools import svgstr2paths
import numpy as np
from PIL import Image
import cairosvg
from io import BytesIO
import numpy as np
import textwrap
import os
import base64
import io
CIRCLE_SVG = "<svg><circle cx='50%' cy='50%' r='50%' /></svg>"
VOID_SVF = "<svg></svg>"
def load_transforms():
transforms = {
'train': None,
'eval': None
}
return transforms
class ImageBaseProcessor():
def __init__(self, mean=None, std=None):
if mean is None:
mean = (0.48145466, 0.4578275, 0.40821073)
if std is None:
std = (0.26862954, 0.26130258, 0.27577711)
self.normalize = transforms.Normalize(mean=mean, std=std)
class ImageTrainProcessor(ImageBaseProcessor):
def __init__(self, mean=None, std=None, size=224, **kwargs):
super().__init__(mean, std)
self.size = size
self.transform = transforms.Compose([
transforms.Resize(self.size, interpolation=InterpolationMode.BICUBIC),
transforms.ToTensor(),
self.normalize
])
def __call__(self, item):
return self.transform(item)
def encode_image_base64(pil_image):
if pil_image.mode == 'RGBA':
pil_image = pil_image.convert('RGB') # Convert RGBA to RGB
buffered = io.BytesIO()
pil_image.save(buffered, format="JPEG")
base64_image = base64.b64encode(buffered.getvalue()).decode("utf-8")
return base64_image
# -------------- Generation utils --------------
def is_valid_svg(svg_text):
try:
svgstr2paths(svg_text)
return True
except Exception as e:
print(f"Invalid SVG: {str(e)}")
return False
def clean_svg(svg_text, output_width=None, output_height=None):
soup = BeautifulSoup(svg_text, 'xml') # Read as soup to parse as xml
svg_bs4 = soup.prettify() # Prettify to get a string
# Store the original signal handler
import signal
original_handler = signal.getsignal(signal.SIGALRM)
try:
# Set a timeout to prevent hanging
def timeout_handler(signum, frame):
raise TimeoutError("SVG processing timed out")
# Set timeout
signal.signal(signal.SIGALRM, timeout_handler)
signal.alarm(5)
# Try direct conversion without BeautifulSoup
svg_cairo = cairosvg.svg2svg(svg_bs4, output_width=output_width, output_height=output_height).decode()
except TimeoutError:
print("SVG conversion timed out, using fallback method")
svg_cairo = """<svg></svg>"""
finally:
# Always cancel the alarm and restore original handler, regardless of success or failure
signal.alarm(0)
signal.signal(signal.SIGALRM, original_handler)
svg_clean = "\n".join([line for line in svg_cairo.split("\n") if not line.strip().startswith("<?xml")]) # Remove xml header
return svg_clean
def use_placeholder():
return VOID_SVF
def process_and_rasterize_svg(svg_string, resolution=256, dpi = 128, scale=2):
try:
svgstr2paths(svg_string) # This will raise an exception if the svg is still not valid
out_svg = svg_string
except:
try:
svg = clean_svg(svg_string)
svgstr2paths(svg) # This will raise an exception if the svg is still not valid
out_svg = svg
except Exception as e:
out_svg = use_placeholder()
raster_image = rasterize_svg(out_svg, resolution, dpi, scale)
return out_svg, raster_image
def rasterize_svg(svg_string, resolution=224, dpi = 128, scale=2):
try:
svg_raster_bytes = cairosvg.svg2png(
bytestring=svg_string,
background_color='white',
output_width=resolution,
output_height=resolution,
dpi=dpi,
scale=scale)
svg_raster = Image.open(BytesIO(svg_raster_bytes))
except:
try:
svg = clean_svg(svg_string)
svg_raster_bytes = cairosvg.svg2png(
bytestring=svg,
background_color='white',
output_width=resolution,
output_height=resolution,
dpi=dpi,
scale=scale)
svg_raster = Image.open(BytesIO(svg_raster_bytes))
except:
svg_raster = Image.new('RGB', (resolution, resolution), color = 'white')
return svg_raster
def find_unclosed_tags(svg_content):
all_tags_pattern = r"<(\w+)"
self_closing_pattern = r"<\w+[^>]*\/>"
all_tags = re.findall(all_tags_pattern, svg_content)
self_closing_matches = re.findall(self_closing_pattern, svg_content)
self_closing_tags = []
for match in self_closing_matches:
tag = re.search(all_tags_pattern, match)
if tag:
self_closing_tags.append(tag.group(1))
unclosed_tags = []
for tag in all_tags:
if all_tags.count(tag) > self_closing_tags.count(tag) + svg_content.count('</' + tag + '>'):
unclosed_tags.append(tag)
unclosed_tags = list(dict.fromkeys(unclosed_tags))
return unclosed_tags
# -------------- Plotting utils --------------
def plot_images_side_by_side_with_metrics(image1, image2, l2_dist, CD, post_processed, out_path):
array1 = np.array(image1).astype(np.float32)
array2 = np.array(image2).astype(np.float32)
diff = np.abs(array1 - array2).astype(np.uint8)
fig, axes = plt.subplots(1, 3, figsize=(10, 5))
axes[0].imshow(image1)
axes[0].set_title('generated_svg')
axes[0].axis('off')
axes[1].imshow(image2)
axes[1].set_title('gt')
axes[1].axis('off')
axes[2].imshow(diff)
axes[2].set_title('Difference')
axes[2].axis('off')
plt.suptitle(f"MSE: {l2_dist:.4f}, CD: {CD:.4f}, post-processed: {str(post_processed)}", fontsize=16, y=1.05)
plt.savefig(out_path, bbox_inches='tight', pad_inches=0.1)
image = Image.open(out_path)
plt.close(fig)
return image
def plot_images_side_by_side(image1, image2, out_path):
array1 = np.array(image1).astype(np.float32)
array2 = np.array(image2).astype(np.float32)
diff = np.abs(array1 - array2).astype(np.uint8)
fig, axes = plt.subplots(1, 3, figsize=(10, 5))
axes[0].imshow(image1)
axes[0].set_title('generated_svg')
axes[0].axis('off')
axes[1].imshow(image2)
axes[1].set_title('gt')
axes[1].axis('off')
axes[2].imshow(diff)
axes[2].set_title('Difference')
axes[2].axis('off')
plt.savefig(out_path, bbox_inches='tight', pad_inches=0.1)
image = Image.open(out_path)
plt.close(fig)
return image
def plot_images_side_by_side_temperatures(samples_temp, metrics, sample_dir, outpath_filename):
# Create a plot with the original image and different temperature results
num_temps = len(samples_temp)
fig, axes = plt.subplots(2, num_temps + 1, figsize=(15, 4), gridspec_kw={'height_ratios': [10, 2]})
# Plot the original image
gt_image_path = os.path.join(sample_dir, f'temp_{list(samples_temp.keys())[0]}', f'{outpath_filename}_or.png')
gt_image = Image.open(gt_image_path)
axes[0, 0].imshow(gt_image)
axes[0, 0].set_title('Original')
axes[0, 0].axis('off')
axes[1, 0].text(0.5, 0.5, 'Original', horizontalalignment='center', verticalalignment='center', fontsize=16)
axes[1, 0].axis('off')
# Plot the generated images for different temperatures and metrics
for idx, (temp, sample) in enumerate(samples_temp.items()):
gen_image_path = os.path.join(sample_dir, f'temp_{temp}', f'{outpath_filename}.png')
gen_image = Image.open(gen_image_path)
axes[0, idx + 1].imshow(gen_image)
axes[0, idx + 1].set_title(f'Temp {temp}')
axes[0, idx + 1].axis('off')
axes[1, idx + 1].text(0.5, 0.5, f'MSE: {metrics[temp]["mse"]:.2f}\nCD: {metrics[temp]["cd"]:.2f}',
horizontalalignment='center', verticalalignment='center', fontsize=12)
axes[1, idx + 1].axis('off')
# Save the comparison plot
comparison_path = os.path.join(sample_dir, f'{outpath_filename}_comparison.png')
plt.tight_layout()
plt.savefig(comparison_path)
plt.close()
def plot_images_and_prompt(prompt, svg_raster, gt_svg_raster, out_path):
# First col shows caption, second col shows generated svg, third col shows gt svg
fig, axes = plt.subplots(1, 3, figsize=(10, 5))
# Split the prompt into multiple lines if it exceeds a certain length
prompt_lines = textwrap.wrap(prompt, width=30)
prompt_text = '\n'.join(prompt_lines)
# Display the prompt in the first cell
axes[0].text(0, 0.5, prompt_text, fontsize=12, ha='left', wrap=True)
axes[0].axis('off')
axes[1].imshow(svg_raster)
axes[1].set_title('generated_svg')
axes[1].axis('off')
axes[2].imshow(gt_svg_raster)
axes[2].set_title('gt')
axes[2].axis('off')
plt.savefig(out_path, bbox_inches='tight', pad_inches=0.1)
image = Image.open(out_path)
plt.close(fig)
return image
def plot_images_and_prompt_with_metrics(prompt, svg_raster, gt_svg_raster, clip_score, post_processed, out_path):
# First col shows caption, second col shows generated svg, third col shows gt svg
fig, axes = plt.subplots(1, 3, figsize=(10, 5))
# Split the prompt into multiple lines if it exceeds a certain length
prompt_lines = textwrap.wrap(prompt, width=30)
prompt_text = '\n'.join(prompt_lines)
# Display the prompt in the first cell
axes[0].text(0, 0.5, prompt_text, fontsize=12, ha='left', wrap=True)
axes[0].axis('off')
axes[1].imshow(svg_raster)
axes[1].set_title('generated_svg')
axes[1].axis('off')
axes[2].imshow(gt_svg_raster)
axes[2].set_title('gt')
axes[2].axis('off')
plt.suptitle(f"CLIP Score: {clip_score:.4f}, post-processed: {str(post_processed)}", fontsize=16, y=1.05)
plt.savefig(out_path, bbox_inches='tight', pad_inches=0.1)
image = Image.open(out_path)
plt.close(fig)
return image
def plot_images_and_prompt_temperatures(prompt, samples_temp, metrics, sample_dir, outpath_filename):
# Calculate the number of temperature variations
num_temps = len(samples_temp)
# Create a plot with text, the original image, and different temperature results
fig, axes = plt.subplots(1, num_temps + 2, figsize=(5 + 3 * (num_temps + 1), 6))
# Split the prompt into multiple lines if it exceeds a certain length
prompt_lines = textwrap.wrap(prompt, width=30)
prompt_text = '\n'.join(prompt_lines)
# Display the prompt in the first cell
axes[0].text(0, 0.5, prompt_text, fontsize=12, ha='left', wrap=True)
axes[0].axis('off')
# Plot the GT (ground truth) image in the second cell
gt_image_path = os.path.join(sample_dir, f'temp_{list(samples_temp.keys())[0]}', f'{outpath_filename}_or.png')
gt_image = Image.open(gt_image_path)
axes[1].imshow(gt_image)
axes[1].set_title('GT Image')
axes[1].axis('off')
# Plot the generated images for different temperatures and display metrics
for idx, (temp, sample) in enumerate(samples_temp.items()):
gen_image_path = os.path.join(sample_dir, f'temp_{temp}', f'{outpath_filename}.png')
gen_image = Image.open(gen_image_path)
axes[idx + 2].imshow(gen_image)
axes[idx + 2].set_title(f'Temp {temp}')
axes[idx + 2].axis('off')
clip_score = metrics[temp]["clip_score"]
axes[idx + 2].text(0.5, -0.1, f'CLIP: {clip_score:.4f}', horizontalalignment='center', verticalalignment='center', fontsize=12, transform=axes[idx + 2].transAxes)
# Save the comparison plot
comparison_path = os.path.join(sample_dir, f'{outpath_filename}_comparison.png')
plt.tight_layout()
plt.savefig(comparison_path)
plt.close()
return comparison_path
def plot_image_tensor(image):
import numpy as np
from PIL import Image
tensor = image[0].cpu().float()
tensor = tensor.permute(1, 2, 0)
array = (tensor.numpy() * 255).astype(np.uint8)
im = Image.fromarray(array)
im.save("tmp/output_image.jpg")
def plot_grid_samples(images, num_cols=5, out_path = 'grid.png'):
# Calculate the number of rows required for the grid
num_images = len(images)
num_rows = (num_images + num_cols - 1) // num_cols
# Create a new figure
fig, axes = plt.subplots(num_rows, num_cols, figsize=(12, 8))
# Loop through the image files and plot them
for i, image in enumerate(images):
row = i // num_cols
col = i % num_cols
# Open and display the image using Pillow
if type(image) == str:
img = Image.open(image)
else:
img = image
axes[row, col].imshow(img)
# axes[row, col].set_title(os.path.basename(image_file))
axes[row, col].axis('off')
# Remove empty subplots
for i in range(num_images, num_rows * num_cols):
row = i // num_cols
col = i % num_cols
fig.delaxes(axes[row, col])
# Adjust spacing between subplots
plt.tight_layout()
# save image
plt.savefig(out_path, dpi=300)
image = Image.open(out_path)
plt.close(fig)
return image