FIRE / src /serve /gradio_web_server.py
zhangbofei
feat: change to fstchat
6dc0c9c
raw
history blame
33.6 kB
"""
The gradio demo server for chatting with a single model.
"""
import argparse
from collections import defaultdict
import datetime
import hashlib
import json
import os
import random
import time
import uuid
import gradio as gr
import requests
from src.constants import (
LOGDIR,
WORKER_API_TIMEOUT,
ErrorCode,
MODERATION_MSG,
CONVERSATION_LIMIT_MSG,
RATE_LIMIT_MSG,
SERVER_ERROR_MSG,
INPUT_CHAR_LEN_LIMIT,
CONVERSATION_TURN_LIMIT,
SESSION_EXPIRATION_TIME,
)
from src.model.model_adapter import (
get_conversation_template,
)
from src.model.model_registry import get_model_info, model_info
from src.serve.api_provider import get_api_provider_stream_iter
from src.serve.remote_logger import get_remote_logger
from src.utils import (
build_logger,
get_window_url_params_js,
get_window_url_params_with_tos_js,
moderation_filter,
parse_gradio_auth_creds,
load_image,
)
logger = build_logger("gradio_web_server", "gradio_web_server.log")
headers = {"User-Agent": "FastChat Client"}
no_change_btn = gr.Button()
enable_btn = gr.Button(interactive=True, visible=True)
disable_btn = gr.Button(interactive=False)
invisible_btn = gr.Button(interactive=False, visible=False)
controller_url = None
enable_moderation = False
use_remote_storage = False
acknowledgment_md = """
### Terms of Service
Users are required to agree to the following terms before using the service:
The service is a research preview. It only provides limited safety measures and may generate offensive content.
It must not be used for any illegal, harmful, violent, racist, or sexual purposes.
Please do not upload any private information.
The service collects user dialogue data, including both text and images, and reserves the right to distribute it under a Creative Commons Attribution (CC-BY) or a similar license.
### Acknowledgment
We thank [UC Berkeley SkyLab](https://sky.cs.berkeley.edu/), [Kaggle](https://www.kaggle.com/), [MBZUAI](https://mbzuai.ac.ae/), [a16z](https://www.a16z.com/), [Together AI](https://www.together.ai/), [Hyperbolic](https://hyperbolic.xyz/), [Anyscale](https://www.anyscale.com/), [HuggingFace](https://huggingface.co/) for their generous [sponsorship](https://lmsys.org/donations/).
<div class="sponsor-image-about">
<img src="https://storage.googleapis.com/public-arena-asset/skylab.png" alt="SkyLab">
<img src="https://storage.googleapis.com/public-arena-asset/kaggle.png" alt="Kaggle">
<img src="https://storage.googleapis.com/public-arena-asset/mbzuai.jpeg" alt="MBZUAI">
<img src="https://storage.googleapis.com/public-arena-asset/a16z.jpeg" alt="a16z">
<img src="https://storage.googleapis.com/public-arena-asset/together.png" alt="Together AI">
<img src="https://storage.googleapis.com/public-arena-asset/hyperbolic_logo.png" alt="Hyperbolic">
<img src="https://storage.googleapis.com/public-arena-asset/anyscale.png" alt="AnyScale">
<img src="https://storage.googleapis.com/public-arena-asset/huggingface.png" alt="HuggingFace">
</div>
"""
# JSON file format of API-based models:
# {
# "gpt-3.5-turbo": {
# "model_name": "gpt-3.5-turbo",
# "api_type": "openai",
# "api_base": "https://api.openai.com/v1",
# "api_key": "sk-******",
# "anony_only": false
# }
# }
#
# - "api_type" can be one of the following: openai, anthropic, gemini, or mistral. For custom APIs, add a new type and implement it accordingly.
# - "anony_only" indicates whether to display this model in anonymous mode only.
api_endpoint_info = {}
class State:
def __init__(self, model_name, is_vision=False):
self.conv = get_conversation_template(model_name)
self.conv_id = uuid.uuid4().hex
self.skip_next = False
self.model_name = model_name
self.oai_thread_id = None
self.is_vision = is_vision
# NOTE(chris): This could be sort of a hack since it assumes the user only uploads one image. If they can upload multiple, we should store a list of image hashes.
self.has_csam_image = False
self.regen_support = True
if "browsing" in model_name:
self.regen_support = False
self.init_system_prompt(self.conv)
def init_system_prompt(self, conv):
system_prompt = conv.get_system_message()
if len(system_prompt) == 0:
return
current_date = datetime.datetime.now().strftime("%Y-%m-%d")
system_prompt = system_prompt.replace("{{currentDateTime}}", current_date)
conv.set_system_message(system_prompt)
def to_gradio_chatbot(self):
return self.conv.to_gradio_chatbot()
def dict(self):
base = self.conv.dict()
base.update(
{
"conv_id": self.conv_id,
"model_name": self.model_name,
}
)
if self.is_vision:
base.update({"has_csam_image": self.has_csam_image})
return base
def set_global_vars(controller_url_, enable_moderation_, use_remote_storage_):
global controller_url, enable_moderation, use_remote_storage
controller_url = controller_url_
enable_moderation = enable_moderation_
use_remote_storage = use_remote_storage_
def get_conv_log_filename(is_vision=False, has_csam_image=False):
t = datetime.datetime.now()
conv_log_filename = f"{t.year}-{t.month:02d}-{t.day:02d}-conv.json"
if is_vision and not has_csam_image:
name = os.path.join(LOGDIR, f"vision-tmp-{conv_log_filename}")
elif is_vision and has_csam_image:
name = os.path.join(LOGDIR, f"vision-csam-{conv_log_filename}")
else:
name = os.path.join(LOGDIR, conv_log_filename)
return name
def get_model_list(controller_url, register_api_endpoint_file, vision_arena):
global api_endpoint_info
# Add models from the controller
if controller_url:
ret = requests.post(controller_url + "/refresh_all_workers")
assert ret.status_code == 200
if vision_arena:
ret = requests.post(controller_url + "/list_multimodal_models")
models = ret.json()["models"]
else:
ret = requests.post(controller_url + "/list_language_models")
models = ret.json()["models"]
else:
models = []
# Add models from the API providers
if register_api_endpoint_file:
api_endpoint_info = json.load(open(register_api_endpoint_file))
for mdl, mdl_dict in api_endpoint_info.items():
mdl_vision = mdl_dict.get("vision-arena", False)
mdl_text = mdl_dict.get("text-arena", True)
if vision_arena and mdl_vision:
models.append(mdl)
if not vision_arena and mdl_text:
models.append(mdl)
# Remove anonymous models
models = list(set(models))
visible_models = models.copy()
for mdl in models:
if mdl not in api_endpoint_info:
continue
mdl_dict = api_endpoint_info[mdl]
if mdl_dict["anony_only"]:
visible_models.remove(mdl)
# Sort models and add descriptions
priority = {k: f"___{i:03d}" for i, k in enumerate(model_info)}
models.sort(key=lambda x: priority.get(x, x))
visible_models.sort(key=lambda x: priority.get(x, x))
logger.info(f"All models: {models}")
logger.info(f"Visible models: {visible_models}")
return visible_models, models
def load_demo_single(models, url_params):
selected_model = models[0] if len(models) > 0 else ""
if "model" in url_params:
model = url_params["model"]
if model in models:
selected_model = model
dropdown_update = gr.Dropdown(choices=models, value=selected_model, visible=True)
state = None
return state, dropdown_update
def load_demo(url_params, request: gr.Request):
global models
ip = get_ip(request)
logger.info(f"load_demo. ip: {ip}. params: {url_params}")
if args.model_list_mode == "reload":
models, all_models = get_model_list(
controller_url, args.register_api_endpoint_file, vision_arena=False
)
return load_demo_single(models, url_params)
def vote_last_response(state, vote_type, model_selector, request: gr.Request):
filename = get_conv_log_filename()
if "llava" in model_selector:
filename = filename.replace("2024", "vision-tmp-2024")
with open(filename, "a") as fout:
data = {
"tstamp": round(time.time(), 4),
"type": vote_type,
"model": model_selector,
"state": state.dict(),
"ip": get_ip(request),
}
fout.write(json.dumps(data) + "\n")
get_remote_logger().log(data)
def upvote_last_response(state, model_selector, request: gr.Request):
ip = get_ip(request)
logger.info(f"upvote. ip: {ip}")
vote_last_response(state, "upvote", model_selector, request)
return ("",) + (disable_btn,) * 3
def downvote_last_response(state, model_selector, request: gr.Request):
ip = get_ip(request)
logger.info(f"downvote. ip: {ip}")
vote_last_response(state, "downvote", model_selector, request)
return ("",) + (disable_btn,) * 3
def flag_last_response(state, model_selector, request: gr.Request):
ip = get_ip(request)
logger.info(f"flag. ip: {ip}")
vote_last_response(state, "flag", model_selector, request)
return ("",) + (disable_btn,) * 3
def regenerate(state, request: gr.Request):
ip = get_ip(request)
logger.info(f"regenerate. ip: {ip}")
if not state.regen_support:
state.skip_next = True
return (state, state.to_gradio_chatbot(), "", None) + (no_change_btn,) * 5
state.conv.update_last_message(None)
return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5
def clear_history(request: gr.Request):
ip = get_ip(request)
logger.info(f"clear_history. ip: {ip}")
state = None
return (state, [], "", None) + (disable_btn,) * 5
def get_ip(request: gr.Request):
if "cf-connecting-ip" in request.headers:
ip = request.headers["cf-connecting-ip"]
elif "x-forwarded-for" in request.headers:
ip = request.headers["x-forwarded-for"]
else:
ip = request.client.host
return ip
# TODO(Chris): At some point, we would like this to be a live-reporting feature.
def report_csam_image(state, image):
pass
def _prepare_text_with_image(state, text, images, csam_flag):
if images is not None and len(images) > 0:
image = images[0]
if len(state.conv.get_images()) > 0:
# reset convo with new image
state.conv = get_conversation_template(state.model_name)
image = state.conv.convert_image_to_base64(
image
) # PIL type is not JSON serializable
if csam_flag:
state.has_csam_image = True
report_csam_image(state, image)
text = text, [image]
return text
def add_text(state, model_selector, text, image, request: gr.Request):
ip = get_ip(request)
logger.info(f"add_text. ip: {ip}. len: {len(text)}")
if state is None:
state = State(model_selector)
if len(text) <= 0:
state.skip_next = True
return (state, state.to_gradio_chatbot(), "", None) + (no_change_btn,) * 5
all_conv_text = state.conv.get_prompt()
all_conv_text = all_conv_text[-2000:] + "\nuser: " + text
flagged = moderation_filter(all_conv_text, [state.model_name])
# flagged = moderation_filter(text, [state.model_name])
if flagged:
logger.info(f"violate moderation. ip: {ip}. text: {text}")
# overwrite the original text
text = MODERATION_MSG
if (len(state.conv.messages) - state.conv.offset) // 2 >= CONVERSATION_TURN_LIMIT:
logger.info(f"conversation turn limit. ip: {ip}. text: {text}")
state.skip_next = True
return (state, state.to_gradio_chatbot(), CONVERSATION_LIMIT_MSG, None) + (
no_change_btn,
) * 5
text = text[:INPUT_CHAR_LEN_LIMIT] # Hard cut-off
text = _prepare_text_with_image(state, text, image, csam_flag=False)
state.conv.append_message(state.conv.roles[0], text)
state.conv.append_message(state.conv.roles[1], None)
return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5
def model_worker_stream_iter(
conv,
model_name,
worker_addr,
prompt,
temperature,
repetition_penalty,
top_p,
max_new_tokens,
images,
):
# Make requests
gen_params = {
"model": model_name,
"prompt": prompt,
"temperature": temperature,
"repetition_penalty": repetition_penalty,
"top_p": top_p,
"max_new_tokens": max_new_tokens,
"stop": conv.stop_str,
"stop_token_ids": conv.stop_token_ids,
"echo": False,
}
logger.info(f"==== request ====\n{gen_params}")
if len(images) > 0:
gen_params["images"] = images
# Stream output
response = requests.post(
worker_addr + "/worker_generate_stream",
headers=headers,
json=gen_params,
stream=True,
timeout=WORKER_API_TIMEOUT,
)
for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"):
if chunk:
data = json.loads(chunk.decode())
yield data
def is_limit_reached(model_name, ip):
monitor_url = "http://localhost:9090"
try:
ret = requests.get(
f"{monitor_url}/is_limit_reached?model={model_name}&user_id={ip}", timeout=1
)
obj = ret.json()
return obj
except Exception as e:
logger.info(f"monitor error: {e}")
return None
def bot_response(
state,
temperature,
top_p,
max_new_tokens,
request: gr.Request,
apply_rate_limit=True,
use_recommended_config=False,
):
ip = get_ip(request)
logger.info(f"bot_response. ip: {ip}")
start_tstamp = time.time()
temperature = float(temperature)
top_p = float(top_p)
max_new_tokens = int(max_new_tokens)
if state.skip_next:
# This generate call is skipped due to invalid inputs
state.skip_next = False
yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5
return
if apply_rate_limit:
ret = is_limit_reached(state.model_name, ip)
if ret is not None and ret["is_limit_reached"]:
error_msg = RATE_LIMIT_MSG + "\n\n" + ret["reason"]
logger.info(f"rate limit reached. ip: {ip}. error_msg: {ret['reason']}")
state.conv.update_last_message(error_msg)
yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5
return
conv, model_name = state.conv, state.model_name
model_api_dict = (
api_endpoint_info[model_name] if model_name in api_endpoint_info else None
)
images = conv.get_images()
if model_api_dict is None:
# Query worker address
ret = requests.post(
controller_url + "/get_worker_address", json={"model": model_name}
)
worker_addr = ret.json()["address"]
logger.info(f"model_name: {model_name}, worker_addr: {worker_addr}")
# No available worker
if worker_addr == "":
conv.update_last_message(SERVER_ERROR_MSG)
yield (
state,
state.to_gradio_chatbot(),
disable_btn,
disable_btn,
disable_btn,
enable_btn,
enable_btn,
)
return
# Construct prompt.
# We need to call it here, so it will not be affected by "▌".
prompt = conv.get_prompt()
# Set repetition_penalty
if "t5" in model_name:
repetition_penalty = 1.2
else:
repetition_penalty = 1.0
stream_iter = model_worker_stream_iter(
conv,
model_name,
worker_addr,
prompt,
temperature,
repetition_penalty,
top_p,
max_new_tokens,
images,
)
else:
if use_recommended_config:
recommended_config = model_api_dict.get("recommended_config", None)
if recommended_config is not None:
temperature = recommended_config.get("temperature", temperature)
top_p = recommended_config.get("top_p", top_p)
max_new_tokens = recommended_config.get(
"max_new_tokens", max_new_tokens
)
stream_iter = get_api_provider_stream_iter(
conv,
model_name,
model_api_dict,
temperature,
top_p,
max_new_tokens,
state,
)
html_code = ' <span class="cursor"></span> '
# conv.update_last_message("▌")
conv.update_last_message(html_code)
yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
try:
data = {"text": ""}
for i, data in enumerate(stream_iter):
if data["error_code"] == 0:
output = data["text"].strip()
# conv.update_last_message(output + "▌")
conv.update_last_message(output + html_code)
yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
else:
output = data["text"] + f"\n\n(error_code: {data['error_code']})"
conv.update_last_message(output)
yield (state, state.to_gradio_chatbot()) + (
disable_btn,
disable_btn,
disable_btn,
enable_btn,
enable_btn,
)
return
output = data["text"].strip()
conv.update_last_message(output)
yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5
except requests.exceptions.RequestException as e:
conv.update_last_message(
f"{SERVER_ERROR_MSG}\n\n"
f"(error_code: {ErrorCode.GRADIO_REQUEST_ERROR}, {e})"
)
yield (state, state.to_gradio_chatbot()) + (
disable_btn,
disable_btn,
disable_btn,
enable_btn,
enable_btn,
)
return
except Exception as e:
conv.update_last_message(
f"{SERVER_ERROR_MSG}\n\n"
f"(error_code: {ErrorCode.GRADIO_STREAM_UNKNOWN_ERROR}, {e})"
)
yield (state, state.to_gradio_chatbot()) + (
disable_btn,
disable_btn,
disable_btn,
enable_btn,
enable_btn,
)
return
finish_tstamp = time.time()
logger.info(f"{output}")
conv.save_new_images(
has_csam_images=state.has_csam_image, use_remote_storage=use_remote_storage
)
filename = get_conv_log_filename(
is_vision=state.is_vision, has_csam_image=state.has_csam_image
)
with open(filename, "a") as fout:
data = {
"tstamp": round(finish_tstamp, 4),
"type": "chat",
"model": model_name,
"gen_params": {
"temperature": temperature,
"top_p": top_p,
"max_new_tokens": max_new_tokens,
},
"start": round(start_tstamp, 4),
"finish": round(finish_tstamp, 4),
"state": state.dict(),
"ip": get_ip(request),
}
fout.write(json.dumps(data) + "\n")
get_remote_logger().log(data)
block_css = """
#notice_markdown .prose {
font-size: 110% !important;
}
#notice_markdown th {
display: none;
}
#notice_markdown td {
padding-top: 6px;
padding-bottom: 6px;
}
#arena_leaderboard_dataframe table {
font-size: 110%;
}
#full_leaderboard_dataframe table {
font-size: 110%;
}
#model_description_markdown {
font-size: 110% !important;
}
#leaderboard_markdown .prose {
font-size: 110% !important;
}
#leaderboard_markdown td {
padding-top: 6px;
padding-bottom: 6px;
}
#leaderboard_dataframe td {
line-height: 0.1em;
}
#about_markdown .prose {
font-size: 110% !important;
}
#ack_markdown .prose {
font-size: 110% !important;
}
#chatbot .prose {
font-size: 105% !important;
}
.sponsor-image-about img {
margin: 0 20px;
margin-top: 20px;
height: 40px;
max-height: 100%;
width: auto;
float: left;
}
.chatbot h1, h2, h3 {
margin-top: 8px; /* Adjust the value as needed */
margin-bottom: 0px; /* Adjust the value as needed */
padding-bottom: 0px;
}
.chatbot h1 {
font-size: 130%;
}
.chatbot h2 {
font-size: 120%;
}
.chatbot h3 {
font-size: 110%;
}
.chatbot p:not(:first-child) {
margin-top: 8px;
}
.typing {
display: inline-block;
}
.cursor {
display: inline-block;
width: 7px;
height: 1em;
background-color: black;
vertical-align: middle;
animation: blink 1s infinite;
}
.dark .cursor {
display: inline-block;
width: 7px;
height: 1em;
background-color: white;
vertical-align: middle;
animation: blink 1s infinite;
}
@keyframes blink {
0%, 50% { opacity: 1; }
50.1%, 100% { opacity: 0; }
}
.app {
max-width: 100% !important;
padding: 20px !important;
}
a {
color: #1976D2; /* Your current link color, a shade of blue */
text-decoration: none; /* Removes underline from links */
}
a:hover {
color: #63A4FF; /* This can be any color you choose for hover */
text-decoration: underline; /* Adds underline on hover */
}
"""
def get_model_description_md(models):
model_description_md = """
| | | |
| ---- | ---- | ---- |
"""
ct = 0
visited = set()
for i, name in enumerate(models):
minfo = get_model_info(name)
if minfo.simple_name in visited:
continue
visited.add(minfo.simple_name)
one_model_md = f"[{minfo.simple_name}]({minfo.link}): {minfo.description}"
if ct % 3 == 0:
model_description_md += "|"
model_description_md += f" {one_model_md} |"
if ct % 3 == 2:
model_description_md += "\n"
ct += 1
return model_description_md
def build_about():
about_markdown = """
# About Us
Chatbot Arena is an open-source research project developed by members from [LMSYS](https://lmsys.org) and UC Berkeley [SkyLab](https://sky.cs.berkeley.edu/). Our mission is to build an open platform to evaluate LLMs by human preference in the real-world.
We open-source our [FastChat](https://github.com/lm-sys/FastChat) project at GitHub and release chat and human feedback dataset. We invite everyone to join us!
## Arena Core Team
- [Lianmin Zheng](https://lmzheng.net/) (co-lead), [Wei-Lin Chiang](https://infwinston.github.io/) (co-lead), [Ying Sheng](https://sites.google.com/view/yingsheng/home), [Joseph E. Gonzalez](https://people.eecs.berkeley.edu/~jegonzal/), [Ion Stoica](http://people.eecs.berkeley.edu/~istoica/)
## Past Members
- [Siyuan Zhuang](https://scholar.google.com/citations?user=KSZmI5EAAAAJ), [Hao Zhang](https://cseweb.ucsd.edu/~haozhang/)
## Learn more
- Chatbot Arena [paper](https://arxiv.org/abs/2403.04132), [launch blog](https://lmsys.org/blog/2023-05-03-arena/), [dataset](https://github.com/lm-sys/FastChat/blob/main/docs/dataset_release.md), [policy](https://lmsys.org/blog/2024-03-01-policy/)
- LMSYS-Chat-1M dataset [paper](https://arxiv.org/abs/2309.11998), LLM Judge [paper](https://arxiv.org/abs/2306.05685)
## Contact Us
- Follow our [X](https://x.com/lmsysorg), [Discord](https://discord.gg/HSWAKCrnFx) or email us at [email protected]
- File issues on [GitHub](https://github.com/lm-sys/FastChat)
- Download our datasets and models on [HuggingFace](https://huggingface.co/lmsys)
## Acknowledgment
We thank [SkyPilot](https://github.com/skypilot-org/skypilot) and [Gradio](https://github.com/gradio-app/gradio) team for their system support.
We also thank [UC Berkeley SkyLab](https://sky.cs.berkeley.edu/), [Kaggle](https://www.kaggle.com/), [MBZUAI](https://mbzuai.ac.ae/), [a16z](https://www.a16z.com/), [Together AI](https://www.together.ai/), [Hyperbolic](https://hyperbolic.xyz/), [Anyscale](https://www.anyscale.com/), [HuggingFace](https://huggingface.co/) for their generous sponsorship. Learn more about partnership [here](https://lmsys.org/donations/).
<div class="sponsor-image-about">
<img src="https://storage.googleapis.com/public-arena-asset/skylab.png" alt="SkyLab">
<img src="https://storage.googleapis.com/public-arena-asset/kaggle.png" alt="Kaggle">
<img src="https://storage.googleapis.com/public-arena-asset/mbzuai.jpeg" alt="MBZUAI">
<img src="https://storage.googleapis.com/public-arena-asset/a16z.jpeg" alt="a16z">
<img src="https://storage.googleapis.com/public-arena-asset/together.png" alt="Together AI">
<img src="https://storage.googleapis.com/public-arena-asset/hyperbolic_logo.png" alt="Hyperbolic">
<img src="https://storage.googleapis.com/public-arena-asset/anyscale.png" alt="AnyScale">
<img src="https://storage.googleapis.com/public-arena-asset/huggingface.png" alt="HuggingFace">
</div>
"""
gr.Markdown(about_markdown, elem_id="about_markdown")
def build_single_model_ui(models, add_promotion_links=False):
promotion = (
"""
- | [GitHub](https://github.com/lm-sys/FastChat) | [Dataset](https://github.com/lm-sys/FastChat/blob/main/docs/dataset_release.md) | [Twitter](https://twitter.com/lmsysorg) | [Discord](https://discord.gg/HSWAKCrnFx) |
- Introducing Llama 2: The Next Generation Open Source Large Language Model. [[Website]](https://ai.meta.com/llama/)
- Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90% ChatGPT Quality. [[Blog]](https://lmsys.org/blog/2023-03-30-vicuna/)
## 🤖 Choose any model to chat
"""
if add_promotion_links
else ""
)
notice_markdown = f"""
# 🏔️ Chat with Open Large Language Models
{promotion}
"""
state = gr.State()
gr.Markdown(notice_markdown, elem_id="notice_markdown")
with gr.Group(elem_id="share-region-named"):
with gr.Row(elem_id="model_selector_row"):
model_selector = gr.Dropdown(
choices=models,
value=models[0] if len(models) > 0 else "",
interactive=True,
show_label=False,
container=False,
)
with gr.Row():
with gr.Accordion(
f"🔍 Expand to see the descriptions of {len(models)} models",
open=False,
):
model_description_md = get_model_description_md(models)
gr.Markdown(model_description_md, elem_id="model_description_markdown")
chatbot = gr.Chatbot(
elem_id="chatbot",
label="Scroll down and start chatting",
height=550,
show_copy_button=True,
)
with gr.Row():
textbox = gr.Textbox(
show_label=False,
placeholder="👉 Enter your prompt and press ENTER",
elem_id="input_box",
)
send_btn = gr.Button(value="Send", variant="primary", scale=0)
with gr.Row() as button_row:
upvote_btn = gr.Button(value="👍 Upvote", interactive=False)
downvote_btn = gr.Button(value="👎 Downvote", interactive=False)
flag_btn = gr.Button(value="⚠️ Flag", interactive=False)
regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=False)
clear_btn = gr.Button(value="🗑️ Clear history", interactive=False)
with gr.Accordion("Parameters", open=False) as parameter_row:
temperature = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.7,
step=0.1,
interactive=True,
label="Temperature",
)
top_p = gr.Slider(
minimum=0.0,
maximum=1.0,
value=1.0,
step=0.1,
interactive=True,
label="Top P",
)
max_output_tokens = gr.Slider(
minimum=16,
maximum=2048,
value=1024,
step=64,
interactive=True,
label="Max output tokens",
)
if add_promotion_links:
gr.Markdown(acknowledgment_md, elem_id="ack_markdown")
# Register listeners
imagebox = gr.State(None)
btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn]
upvote_btn.click(
upvote_last_response,
[state, model_selector],
[textbox, upvote_btn, downvote_btn, flag_btn],
)
downvote_btn.click(
downvote_last_response,
[state, model_selector],
[textbox, upvote_btn, downvote_btn, flag_btn],
)
flag_btn.click(
flag_last_response,
[state, model_selector],
[textbox, upvote_btn, downvote_btn, flag_btn],
)
regenerate_btn.click(
regenerate, state, [state, chatbot, textbox, imagebox] + btn_list
).then(
bot_response,
[state, temperature, top_p, max_output_tokens],
[state, chatbot] + btn_list,
)
clear_btn.click(clear_history, None, [state, chatbot, textbox, imagebox] + btn_list)
model_selector.change(
clear_history, None, [state, chatbot, textbox, imagebox] + btn_list
)
textbox.submit(
add_text,
[state, model_selector, textbox, imagebox],
[state, chatbot, textbox, imagebox] + btn_list,
).then(
bot_response,
[state, temperature, top_p, max_output_tokens],
[state, chatbot] + btn_list,
)
send_btn.click(
add_text,
[state, model_selector, textbox, imagebox],
[state, chatbot, textbox, imagebox] + btn_list,
).then(
bot_response,
[state, temperature, top_p, max_output_tokens],
[state, chatbot] + btn_list,
)
return [state, model_selector]
def build_demo(models):
with gr.Blocks(
title="Chat with Open Large Language Models",
theme=gr.themes.Default(),
css=block_css,
) as demo:
url_params = gr.JSON(visible=False)
state, model_selector = build_single_model_ui(models)
if args.model_list_mode not in ["once", "reload"]:
raise ValueError(f"Unknown model list mode: {args.model_list_mode}")
if args.show_terms_of_use:
load_js = get_window_url_params_with_tos_js
else:
load_js = get_window_url_params_js
demo.load(
load_demo,
[url_params],
[
state,
model_selector,
],
js=load_js,
)
return demo
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="0.0.0.0")
parser.add_argument("--port", type=int)
parser.add_argument(
"--share",
action="store_true",
help="Whether to generate a public, shareable link",
)
parser.add_argument(
"--controller-url",
type=str,
default="http://localhost:21001",
help="The address of the controller",
)
parser.add_argument(
"--concurrency-count",
type=int,
default=10,
help="The concurrency count of the gradio queue",
)
parser.add_argument(
"--model-list-mode",
type=str,
default="once",
choices=["once", "reload"],
help="Whether to load the model list once or reload the model list every time",
)
parser.add_argument(
"--moderate",
action="store_true",
help="Enable content moderation to block unsafe inputs",
)
parser.add_argument(
"--show-terms-of-use",
action="store_true",
help="Shows term of use before loading the demo",
)
parser.add_argument(
"--register-api-endpoint-file",
type=str,
help="Register API-based model endpoints from a JSON file",
)
parser.add_argument(
"--gradio-auth-path",
type=str,
help='Set the gradio authentication file path. The file should contain one or more user:password pairs in this format: "u1:p1,u2:p2,u3:p3"',
)
parser.add_argument(
"--gradio-root-path",
type=str,
help="Sets the gradio root path, eg /abc/def. Useful when running behind a reverse-proxy or at a custom URL path prefix",
)
parser.add_argument(
"--use-remote-storage",
action="store_true",
default=False,
help="Uploads image files to google cloud storage if set to true",
)
args = parser.parse_args()
logger.info(f"args: {args}")
# Set global variables
set_global_vars(args.controller_url, args.moderate, args.use_remote_storage)
models, all_models = get_model_list(
args.controller_url, args.register_api_endpoint_file, vision_arena=False
)
# Set authorization credentials
auth = None
if args.gradio_auth_path is not None:
auth = parse_gradio_auth_creds(args.gradio_auth_path)
# Launch the demo
demo = build_demo(models)
demo.queue(
default_concurrency_limit=args.concurrency_count,
status_update_rate=10,
api_open=False,
).launch(
server_name=args.host,
server_port=args.port,
share=args.share,
max_threads=200,
auth=auth,
root_path=args.gradio_root_path,
)