SG3D-Demo / leo /utils.py
zfzhang-thu
non-LFS commit
9de012e
import csv
import copy
import torch
import einops
import numpy as np
from torch import nn
import torch.nn.functional as F
def get_activation_fn(activation_type):
if activation_type not in ["relu", "gelu", "glu"]:
raise RuntimeError(f"activation function currently support relu/gelu, not {activation_type}")
return getattr(F, activation_type)
def get_mlp_head(input_size, hidden_size, output_size, dropout=0):
return nn.Sequential(*[
nn.Linear(input_size, hidden_size),
nn.ReLU(),
nn.LayerNorm(hidden_size, eps=1e-12),
nn.Dropout(dropout),
nn.Linear(hidden_size, output_size)
])
def layer_repeat(module, N, share_layer=False):
if share_layer:
return nn.ModuleList([module] * N)
else:
return nn.ModuleList([copy.deepcopy(module) for _ in range(N - 1)] + [module])
def calc_pairwise_locs(obj_centers, obj_whls, eps=1e-10, pairwise_rel_type='center', spatial_dist_norm=True,
spatial_dim=5):
if pairwise_rel_type == 'mlp':
obj_locs = torch.cat([obj_centers, obj_whls], 2)
pairwise_locs = torch.cat(
[einops.repeat(obj_locs, 'b l d -> b l x d', x=obj_locs.size(1)),
einops.repeat(obj_locs, 'b l d -> b x l d', x=obj_locs.size(1))],
dim=3
)
return pairwise_locs
pairwise_locs = einops.repeat(obj_centers, 'b l d -> b l 1 d') \
- einops.repeat(obj_centers, 'b l d -> b 1 l d')
pairwise_dists = torch.sqrt(torch.sum(pairwise_locs ** 2, 3) + eps) # (b, l, l)
if spatial_dist_norm:
max_dists = torch.max(pairwise_dists.view(pairwise_dists.size(0), -1), dim=1)[0]
norm_pairwise_dists = pairwise_dists / einops.repeat(max_dists, 'b -> b 1 1')
else:
norm_pairwise_dists = pairwise_dists
if spatial_dim == 1:
return norm_pairwise_dists.unsqueeze(3)
pairwise_dists_2d = torch.sqrt(torch.sum(pairwise_locs[..., :2] ** 2, 3) + eps)
if pairwise_rel_type == 'center':
pairwise_locs = torch.stack(
[norm_pairwise_dists, pairwise_locs[..., 2] / pairwise_dists,
pairwise_dists_2d / pairwise_dists, pairwise_locs[..., 1] / pairwise_dists_2d,
pairwise_locs[..., 0] / pairwise_dists_2d],
dim=3
)
elif pairwise_rel_type == 'vertical_bottom':
bottom_centers = torch.clone(obj_centers)
bottom_centers[:, :, 2] -= obj_whls[:, :, 2]
bottom_pairwise_locs = einops.repeat(bottom_centers, 'b l d -> b l 1 d') \
- einops.repeat(bottom_centers, 'b l d -> b 1 l d')
bottom_pairwise_dists = torch.sqrt(torch.sum(bottom_pairwise_locs ** 2, 3) + eps) # (b, l, l)
bottom_pairwise_dists_2d = torch.sqrt(torch.sum(bottom_pairwise_locs[..., :2] ** 2, 3) + eps)
pairwise_locs = torch.stack(
[norm_pairwise_dists,
bottom_pairwise_locs[..., 2] / bottom_pairwise_dists,
bottom_pairwise_dists_2d / bottom_pairwise_dists,
pairwise_locs[..., 1] / pairwise_dists_2d,
pairwise_locs[..., 0] / pairwise_dists_2d],
dim=3
)
if spatial_dim == 4:
pairwise_locs = pairwise_locs[..., 1:]
return pairwise_locs
def convert_pc_to_box(obj_pc):
xmin = np.min(obj_pc[:,0])
ymin = np.min(obj_pc[:,1])
zmin = np.min(obj_pc[:,2])
xmax = np.max(obj_pc[:,0])
ymax = np.max(obj_pc[:,1])
zmax = np.max(obj_pc[:,2])
center = [(xmin+xmax)/2, (ymin+ymax)/2, (zmin+zmax)/2]
box_size = [xmax-xmin, ymax-ymin, zmax-zmin]
return center, box_size
class LabelConverter(object):
def __init__(self, file_path):
self.raw_name_to_id = {}
self.nyu40id_to_id = {}
self.nyu40_name_to_id = {}
self.scannet_name_to_scannet_id = {'cabinet':0, 'bed':1, 'chair':2, 'sofa':3, 'table':4,
'door':5, 'window':6,'bookshelf':7,'picture':8, 'counter':9, 'desk':10, 'curtain':11,
'refrigerator':12, 'shower curtain':13, 'toilet':14, 'sink':15, 'bathtub':16, 'others':17}
self.id_to_scannetid = {}
self.scannet_raw_id_to_raw_name = {}
self.raw_name_to_scannet_raw_id = {}
with open(file_path, encoding='utf-8') as fd:
rd = list(csv.reader(fd, delimiter="\t", quotechar='"'))
for i in range(1, len(rd)):
raw_id = i - 1
scannet_raw_id = int(rd[i][0])
raw_name = rd[i][1]
nyu40_id = int(rd[i][4])
nyu40_name = rd[i][7]
self.raw_name_to_id[raw_name] = raw_id
self.scannet_raw_id_to_raw_name[scannet_raw_id] = raw_name
self.raw_name_to_scannet_raw_id[raw_name] = scannet_raw_id
self.nyu40id_to_id[nyu40_id] = raw_id
self.nyu40_name_to_id[nyu40_name] = raw_id
if nyu40_name not in self.scannet_name_to_scannet_id:
self.id_to_scannetid[raw_id] = self.scannet_name_to_scannet_id['others']
else:
self.id_to_scannetid[raw_id] = self.scannet_name_to_scannet_id[nyu40_name]
def build_rotate_mat(split, rot_aug=True, rand_angle='axis'):
if rand_angle == 'random':
theta = np.random.rand() * np.pi * 2
else:
ROTATE_ANGLES = [0, np.pi/2, np.pi, np.pi*3/2]
theta_idx = np.random.randint(len(ROTATE_ANGLES))
theta = ROTATE_ANGLES[theta_idx]
if (theta is not None) and (theta != 0) and (split == 'train') and rot_aug:
rot_matrix = np.array([
[np.cos(theta), -np.sin(theta), 0],
[np.sin(theta), np.cos(theta), 0],
[0, 0, 1]
], dtype=np.float32)
else:
rot_matrix = None
return rot_matrix
def obj_processing_post(obj_pcds, rot_aug=True):
obj_pcds = torch.from_numpy(obj_pcds)
rot_matrix = build_rotate_mat('val', rot_aug)
if rot_matrix is not None:
rot_matrix = torch.from_numpy(rot_matrix.transpose())
obj_pcds[:, :, :3] @= rot_matrix
xyz = obj_pcds[:, :, :3]
center = xyz.mean(1)
xyz_min = xyz.min(1).values
xyz_max = xyz.max(1).values
box_center = (xyz_min + xyz_max) / 2
size = xyz_max - xyz_min
obj_locs = torch.cat([center, size], dim=1)
obj_boxes = torch.cat([box_center, size], dim=1)
# centering
obj_pcds[:, :, :3].sub_(obj_pcds[:, :, :3].mean(1, keepdim=True))
# normalization
max_dist = (obj_pcds[:, :, :3]**2).sum(2).sqrt().max(1).values
max_dist.clamp_(min=1e-6)
obj_pcds[:, :, :3].div_(max_dist[:, None, None])
return obj_pcds, obj_locs, obj_boxes, rot_matrix
def pad_sequence(sequence_list, max_len=None, pad=0, return_mask=False):
lens = [x.shape[0] for x in sequence_list]
if max_len is None:
max_len = max(lens)
shape = list(sequence_list[0].shape)
shape[0] = max_len
shape = [len(sequence_list)] + shape
dtype = sequence_list[0].dtype
device = sequence_list[0].device
padded_sequence = torch.ones(shape, dtype=dtype, device=device) * pad
for i, tensor in enumerate(sequence_list):
padded_sequence[i, :tensor.shape[0]] = tensor
padded_sequence = padded_sequence.to(dtype)
if return_mask:
mask = torch.arange(max_len).to(device)[None, :] >= torch.LongTensor(lens).to(device)[:, None] # True as masked.
return padded_sequence, mask
else:
return padded_sequence