Spaces:
Runtime error
Runtime error
import csv | |
import copy | |
import torch | |
import einops | |
import numpy as np | |
from torch import nn | |
import torch.nn.functional as F | |
def get_activation_fn(activation_type): | |
if activation_type not in ["relu", "gelu", "glu"]: | |
raise RuntimeError(f"activation function currently support relu/gelu, not {activation_type}") | |
return getattr(F, activation_type) | |
def get_mlp_head(input_size, hidden_size, output_size, dropout=0): | |
return nn.Sequential(*[ | |
nn.Linear(input_size, hidden_size), | |
nn.ReLU(), | |
nn.LayerNorm(hidden_size, eps=1e-12), | |
nn.Dropout(dropout), | |
nn.Linear(hidden_size, output_size) | |
]) | |
def layer_repeat(module, N, share_layer=False): | |
if share_layer: | |
return nn.ModuleList([module] * N) | |
else: | |
return nn.ModuleList([copy.deepcopy(module) for _ in range(N - 1)] + [module]) | |
def calc_pairwise_locs(obj_centers, obj_whls, eps=1e-10, pairwise_rel_type='center', spatial_dist_norm=True, | |
spatial_dim=5): | |
if pairwise_rel_type == 'mlp': | |
obj_locs = torch.cat([obj_centers, obj_whls], 2) | |
pairwise_locs = torch.cat( | |
[einops.repeat(obj_locs, 'b l d -> b l x d', x=obj_locs.size(1)), | |
einops.repeat(obj_locs, 'b l d -> b x l d', x=obj_locs.size(1))], | |
dim=3 | |
) | |
return pairwise_locs | |
pairwise_locs = einops.repeat(obj_centers, 'b l d -> b l 1 d') \ | |
- einops.repeat(obj_centers, 'b l d -> b 1 l d') | |
pairwise_dists = torch.sqrt(torch.sum(pairwise_locs ** 2, 3) + eps) # (b, l, l) | |
if spatial_dist_norm: | |
max_dists = torch.max(pairwise_dists.view(pairwise_dists.size(0), -1), dim=1)[0] | |
norm_pairwise_dists = pairwise_dists / einops.repeat(max_dists, 'b -> b 1 1') | |
else: | |
norm_pairwise_dists = pairwise_dists | |
if spatial_dim == 1: | |
return norm_pairwise_dists.unsqueeze(3) | |
pairwise_dists_2d = torch.sqrt(torch.sum(pairwise_locs[..., :2] ** 2, 3) + eps) | |
if pairwise_rel_type == 'center': | |
pairwise_locs = torch.stack( | |
[norm_pairwise_dists, pairwise_locs[..., 2] / pairwise_dists, | |
pairwise_dists_2d / pairwise_dists, pairwise_locs[..., 1] / pairwise_dists_2d, | |
pairwise_locs[..., 0] / pairwise_dists_2d], | |
dim=3 | |
) | |
elif pairwise_rel_type == 'vertical_bottom': | |
bottom_centers = torch.clone(obj_centers) | |
bottom_centers[:, :, 2] -= obj_whls[:, :, 2] | |
bottom_pairwise_locs = einops.repeat(bottom_centers, 'b l d -> b l 1 d') \ | |
- einops.repeat(bottom_centers, 'b l d -> b 1 l d') | |
bottom_pairwise_dists = torch.sqrt(torch.sum(bottom_pairwise_locs ** 2, 3) + eps) # (b, l, l) | |
bottom_pairwise_dists_2d = torch.sqrt(torch.sum(bottom_pairwise_locs[..., :2] ** 2, 3) + eps) | |
pairwise_locs = torch.stack( | |
[norm_pairwise_dists, | |
bottom_pairwise_locs[..., 2] / bottom_pairwise_dists, | |
bottom_pairwise_dists_2d / bottom_pairwise_dists, | |
pairwise_locs[..., 1] / pairwise_dists_2d, | |
pairwise_locs[..., 0] / pairwise_dists_2d], | |
dim=3 | |
) | |
if spatial_dim == 4: | |
pairwise_locs = pairwise_locs[..., 1:] | |
return pairwise_locs | |
def convert_pc_to_box(obj_pc): | |
xmin = np.min(obj_pc[:,0]) | |
ymin = np.min(obj_pc[:,1]) | |
zmin = np.min(obj_pc[:,2]) | |
xmax = np.max(obj_pc[:,0]) | |
ymax = np.max(obj_pc[:,1]) | |
zmax = np.max(obj_pc[:,2]) | |
center = [(xmin+xmax)/2, (ymin+ymax)/2, (zmin+zmax)/2] | |
box_size = [xmax-xmin, ymax-ymin, zmax-zmin] | |
return center, box_size | |
class LabelConverter(object): | |
def __init__(self, file_path): | |
self.raw_name_to_id = {} | |
self.nyu40id_to_id = {} | |
self.nyu40_name_to_id = {} | |
self.scannet_name_to_scannet_id = {'cabinet':0, 'bed':1, 'chair':2, 'sofa':3, 'table':4, | |
'door':5, 'window':6,'bookshelf':7,'picture':8, 'counter':9, 'desk':10, 'curtain':11, | |
'refrigerator':12, 'shower curtain':13, 'toilet':14, 'sink':15, 'bathtub':16, 'others':17} | |
self.id_to_scannetid = {} | |
self.scannet_raw_id_to_raw_name = {} | |
self.raw_name_to_scannet_raw_id = {} | |
with open(file_path, encoding='utf-8') as fd: | |
rd = list(csv.reader(fd, delimiter="\t", quotechar='"')) | |
for i in range(1, len(rd)): | |
raw_id = i - 1 | |
scannet_raw_id = int(rd[i][0]) | |
raw_name = rd[i][1] | |
nyu40_id = int(rd[i][4]) | |
nyu40_name = rd[i][7] | |
self.raw_name_to_id[raw_name] = raw_id | |
self.scannet_raw_id_to_raw_name[scannet_raw_id] = raw_name | |
self.raw_name_to_scannet_raw_id[raw_name] = scannet_raw_id | |
self.nyu40id_to_id[nyu40_id] = raw_id | |
self.nyu40_name_to_id[nyu40_name] = raw_id | |
if nyu40_name not in self.scannet_name_to_scannet_id: | |
self.id_to_scannetid[raw_id] = self.scannet_name_to_scannet_id['others'] | |
else: | |
self.id_to_scannetid[raw_id] = self.scannet_name_to_scannet_id[nyu40_name] | |
def build_rotate_mat(split, rot_aug=True, rand_angle='axis'): | |
if rand_angle == 'random': | |
theta = np.random.rand() * np.pi * 2 | |
else: | |
ROTATE_ANGLES = [0, np.pi/2, np.pi, np.pi*3/2] | |
theta_idx = np.random.randint(len(ROTATE_ANGLES)) | |
theta = ROTATE_ANGLES[theta_idx] | |
if (theta is not None) and (theta != 0) and (split == 'train') and rot_aug: | |
rot_matrix = np.array([ | |
[np.cos(theta), -np.sin(theta), 0], | |
[np.sin(theta), np.cos(theta), 0], | |
[0, 0, 1] | |
], dtype=np.float32) | |
else: | |
rot_matrix = None | |
return rot_matrix | |
def obj_processing_post(obj_pcds, rot_aug=True): | |
obj_pcds = torch.from_numpy(obj_pcds) | |
rot_matrix = build_rotate_mat('val', rot_aug) | |
if rot_matrix is not None: | |
rot_matrix = torch.from_numpy(rot_matrix.transpose()) | |
obj_pcds[:, :, :3] @= rot_matrix | |
xyz = obj_pcds[:, :, :3] | |
center = xyz.mean(1) | |
xyz_min = xyz.min(1).values | |
xyz_max = xyz.max(1).values | |
box_center = (xyz_min + xyz_max) / 2 | |
size = xyz_max - xyz_min | |
obj_locs = torch.cat([center, size], dim=1) | |
obj_boxes = torch.cat([box_center, size], dim=1) | |
# centering | |
obj_pcds[:, :, :3].sub_(obj_pcds[:, :, :3].mean(1, keepdim=True)) | |
# normalization | |
max_dist = (obj_pcds[:, :, :3]**2).sum(2).sqrt().max(1).values | |
max_dist.clamp_(min=1e-6) | |
obj_pcds[:, :, :3].div_(max_dist[:, None, None]) | |
return obj_pcds, obj_locs, obj_boxes, rot_matrix | |
def pad_sequence(sequence_list, max_len=None, pad=0, return_mask=False): | |
lens = [x.shape[0] for x in sequence_list] | |
if max_len is None: | |
max_len = max(lens) | |
shape = list(sequence_list[0].shape) | |
shape[0] = max_len | |
shape = [len(sequence_list)] + shape | |
dtype = sequence_list[0].dtype | |
device = sequence_list[0].device | |
padded_sequence = torch.ones(shape, dtype=dtype, device=device) * pad | |
for i, tensor in enumerate(sequence_list): | |
padded_sequence[i, :tensor.shape[0]] = tensor | |
padded_sequence = padded_sequence.to(dtype) | |
if return_mask: | |
mask = torch.arange(max_len).to(device)[None, :] >= torch.LongTensor(lens).to(device)[:, None] # True as masked. | |
return padded_sequence, mask | |
else: | |
return padded_sequence |