Spaces:
Runtime error
Runtime error
import argparse | |
import math | |
import os | |
from pathlib import Path | |
from typing import Optional | |
import torch | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
from accelerate import Accelerator | |
from accelerate.logging import get_logger | |
from accelerate.utils import set_seed | |
from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline, UNet2DConditionModel | |
from huggingface_hub import HfFolder, Repository, whoami | |
from PIL import Image | |
import numpy as np | |
from torchvision import transforms | |
from tqdm.auto import tqdm | |
from transformers import CLIPTextModel, CLIPTokenizer | |
logger = get_logger(__name__) | |
def parse_args(): | |
parser = argparse.ArgumentParser(description="Simple example of a training script.") | |
parser.add_argument( | |
"--pretrained_model_name_or_path", | |
type=str, | |
default=None, | |
required=True, | |
help="Path to pretrained model or model identifier from huggingface.co/models.", | |
) | |
parser.add_argument( | |
"--tokenizer_name", | |
type=str, | |
default=None, | |
help="Pretrained tokenizer name or path if not the same as model_name", | |
) | |
parser.add_argument( | |
"--input_image", | |
type=str, | |
default=None, | |
required=True, | |
help="Path to input image to edit.", | |
) | |
parser.add_argument( | |
"--target_text", | |
type=str, | |
default=None, | |
help="The target text describing the output image.", | |
) | |
parser.add_argument( | |
"--output_dir", | |
type=str, | |
default="text-inversion-model", | |
help="The output directory where the model predictions and checkpoints will be written.", | |
) | |
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") | |
parser.add_argument( | |
"--resolution", | |
type=int, | |
default=512, | |
help=( | |
"The resolution for input images, all the images in the train/validation dataset will be resized to this" | |
" resolution" | |
), | |
) | |
parser.add_argument( | |
"--center_crop", action="store_true", help="Whether to center crop images before resizing to resolution" | |
) | |
parser.add_argument( | |
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." | |
) | |
parser.add_argument( | |
"--emb_train_steps", | |
type=int, | |
default=500, | |
help="Total number of training steps to perform.", | |
) | |
parser.add_argument( | |
"--max_train_steps", | |
type=int, | |
default=1000, | |
help="Total number of training steps to perform.", | |
) | |
parser.add_argument( | |
"--gradient_accumulation_steps", | |
type=int, | |
default=1, | |
help="Number of updates steps to accumulate before performing a backward/update pass.", | |
) | |
parser.add_argument( | |
"--gradient_checkpointing", | |
action="store_true", | |
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", | |
) | |
parser.add_argument( | |
"--emb_learning_rate", | |
type=float, | |
default=1e-3, | |
help="Learning rate for optimizing the embeddings.", | |
) | |
parser.add_argument( | |
"--learning_rate", | |
type=float, | |
default=1e-6, | |
help="Learning rate for fine tuning the model.", | |
) | |
parser.add_argument( | |
"--scale_lr", | |
action="store_true", | |
default=False, | |
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", | |
) | |
parser.add_argument( | |
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." | |
) | |
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") | |
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") | |
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") | |
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") | |
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") | |
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") | |
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") | |
parser.add_argument( | |
"--hub_model_id", | |
type=str, | |
default=None, | |
help="The name of the repository to keep in sync with the local `output_dir`.", | |
) | |
parser.add_argument( | |
"--logging_dir", | |
type=str, | |
default="logs", | |
help=( | |
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" | |
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." | |
), | |
) | |
parser.add_argument("--log_interval", type=int, default=10, help="Log every N steps.") | |
parser.add_argument( | |
"--mixed_precision", | |
type=str, | |
default="no", | |
choices=["no", "fp16", "bf16"], | |
help=( | |
"Whether to use mixed precision. Choose" | |
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." | |
"and an Nvidia Ampere GPU." | |
), | |
) | |
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") | |
args = parser.parse_args() | |
env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) | |
if env_local_rank != -1 and env_local_rank != args.local_rank: | |
args.local_rank = env_local_rank | |
return args | |
class AverageMeter: | |
def __init__(self, name=None): | |
self.name = name | |
self.reset() | |
def reset(self): | |
self.sum = self.count = self.avg = 0 | |
def update(self, val, n=1): | |
self.sum += val * n | |
self.count += n | |
self.avg = self.sum / self.count | |
def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None): | |
if token is None: | |
token = HfFolder.get_token() | |
if organization is None: | |
username = whoami(token)["name"] | |
return f"{username}/{model_id}" | |
else: | |
return f"{organization}/{model_id}" | |
def main(): | |
args = parse_args() | |
logging_dir = Path(args.output_dir, args.logging_dir) | |
accelerator = Accelerator( | |
gradient_accumulation_steps=args.gradient_accumulation_steps, | |
mixed_precision=args.mixed_precision, | |
log_with="tensorboard", | |
logging_dir=logging_dir, | |
) | |
if args.seed is not None: | |
set_seed(args.seed) | |
# Handle the repository creation | |
if accelerator.is_main_process: | |
if args.push_to_hub: | |
if args.hub_model_id is None: | |
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token) | |
else: | |
repo_name = args.hub_model_id | |
repo = Repository(args.output_dir, clone_from=repo_name) | |
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore: | |
if "step_*" not in gitignore: | |
gitignore.write("step_*\n") | |
if "epoch_*" not in gitignore: | |
gitignore.write("epoch_*\n") | |
elif args.output_dir is not None: | |
os.makedirs(args.output_dir, exist_ok=True) | |
# Load the tokenizer | |
if args.tokenizer_name: | |
tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name) | |
elif args.pretrained_model_name_or_path: | |
tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer", use_auth_token=True) | |
# Load models and create wrapper for stable diffusion | |
text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder", use_auth_token=True) | |
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", use_auth_token=True) | |
unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet", use_auth_token=True) | |
if args.gradient_checkpointing: | |
unet.enable_gradient_checkpointing() | |
if args.scale_lr: | |
args.learning_rate = ( | |
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes | |
) | |
# Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs | |
if args.use_8bit_adam: | |
try: | |
import bitsandbytes as bnb | |
except ImportError: | |
raise ImportError( | |
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." | |
) | |
optimizer_class = bnb.optim.Adam8bit | |
else: | |
optimizer_class = torch.optim.Adam | |
noise_scheduler = DDPMScheduler( | |
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000 | |
) | |
weight_dtype = torch.float32 | |
if args.mixed_precision == "fp16": | |
weight_dtype = torch.float16 | |
elif args.mixed_precision == "bf16": | |
weight_dtype = torch.bfloat16 | |
# Move text_encode and vae to gpu. | |
# For mixed precision training we cast the text_encoder and vae weights to half-precision | |
# as these models are only used for inference, keeping weights in full precision is not required. | |
text_encoder.to(accelerator.device, dtype=weight_dtype) | |
vae.to(accelerator.device, dtype=weight_dtype) | |
# Encode the input image. | |
input_image = Image.open(args.input_image).convert("RGB") | |
image_transforms = transforms.Compose( | |
[ | |
transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR), | |
transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution), | |
transforms.ToTensor(), | |
transforms.Normalize([0.5], [0.5]), | |
] | |
) | |
init_image = image_transforms(input_image) | |
init_image = init_image[None].to(device=accelerator.device, dtype=weight_dtype) | |
with torch.inference_mode(): | |
init_latents = vae.encode(init_image).latent_dist.sample() | |
init_latents = 0.18215 * init_latents | |
# Encode the target text. | |
text_ids = tokenizer( | |
args.target_text, | |
padding="max_length", | |
truncation=True, | |
max_length=tokenizer.model_max_length, | |
return_tensors="pt", | |
).input_ids | |
text_ids = text_ids.to(device=accelerator.device) | |
with torch.inference_mode(): | |
target_embeddings = text_encoder(text_ids)[0] | |
del vae, text_encoder | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
target_embeddings = target_embeddings.float() | |
optimized_embeddings = target_embeddings.clone() | |
# Optimize the text embeddings first. | |
optimized_embeddings.requires_grad_(True) | |
optimizer = optimizer_class( | |
[optimized_embeddings], # only optimize embeddings | |
lr=args.emb_learning_rate, | |
betas=(args.adam_beta1, args.adam_beta2), | |
# weight_decay=args.adam_weight_decay, | |
eps=args.adam_epsilon, | |
) | |
unet, optimizer = accelerator.prepare(unet, optimizer) | |
# We need to initialize the trackers we use, and also store our configuration. | |
# The trackers initializes automatically on the main process. | |
if accelerator.is_main_process: | |
accelerator.init_trackers("imagic", config=vars(args)) | |
def train_loop(pbar, optimizer, params): | |
loss_avg = AverageMeter() | |
for step in pbar: | |
with accelerator.accumulate(unet): | |
noise = torch.randn_like(init_latents) | |
bsz = init_latents.shape[0] | |
# Sample a random timestep for each image | |
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=init_latents.device) | |
timesteps = timesteps.long() | |
# Add noise to the latents according to the noise magnitude at each timestep | |
# (this is the forward diffusion process) | |
noisy_latents = noise_scheduler.add_noise(init_latents, noise, timesteps) | |
noise_pred = unet(noisy_latents, timesteps, optimized_embeddings).sample | |
loss = F.mse_loss(noise_pred.float(), noise.float(), reduction="mean") | |
accelerator.backward(loss) | |
# if accelerator.sync_gradients: # results aren't good with it, may be will need more training with it. | |
# accelerator.clip_grad_norm_(params, args.max_grad_norm) | |
optimizer.step() | |
optimizer.zero_grad(set_to_none=True) | |
loss_avg.update(loss.detach_(), bsz) | |
if not step % args.log_interval: | |
logs = {"loss": loss_avg.avg.item()} | |
progress_bar.set_postfix(**logs) | |
accelerator.log(logs, step=step) | |
accelerator.wait_for_everyone() | |
progress_bar = tqdm(range(args.emb_train_steps), disable=not accelerator.is_local_main_process) | |
progress_bar.set_description("Optimizing embedding") | |
train_loop(progress_bar, optimizer, optimized_embeddings) | |
optimized_embeddings.requires_grad_(False) | |
if accelerator.is_main_process: | |
torch.save(target_embeddings.cpu(), os.path.join(args.output_dir, "target_embeddings.pt")) | |
torch.save(optimized_embeddings.cpu(), os.path.join(args.output_dir, "optimized_embeddings.pt")) | |
with open(os.path.join(args.output_dir, "target_text.txt"), "w") as f: | |
f.write(args.target_text) | |
# Fine tune the diffusion model. | |
optimizer = optimizer_class( | |
accelerator.unwrap_model(unet).parameters(), | |
lr=args.learning_rate, | |
betas=(args.adam_beta1, args.adam_beta2), | |
# weight_decay=args.adam_weight_decay, | |
eps=args.adam_epsilon, | |
) | |
optimizer = accelerator.prepare(optimizer) | |
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process) | |
progress_bar.set_description("Fine Tuning") | |
unet.train() | |
train_loop(progress_bar, optimizer, unet.parameters()) | |
# Create the pipeline using using the trained modules and save it. | |
if accelerator.is_main_process: | |
pipeline = StableDiffusionPipeline.from_pretrained( | |
args.pretrained_model_name_or_path, | |
unet=accelerator.unwrap_model(unet), | |
use_auth_token=True | |
) | |
pipeline.save_pretrained(args.output_dir) | |
if args.push_to_hub: | |
repo.push_to_hub(commit_message="End of training", blocking=False, auto_lfs_prune=True) | |
accelerator.end_training() | |
if __name__ == "__main__": | |
main() | |