liangsu9988's picture
Upload 505 files
3e88ee7
import intel_extension_for_pytorch as ipex
import torch
from PIL import Image
from diffusers import StableDiffusionPipeline
def image_grid(imgs, rows, cols):
assert len(imgs) == rows * cols
w, h = imgs[0].size
grid = Image.new("RGB", size=(cols * w, rows * h))
grid_w, grid_h = grid.size
for i, img in enumerate(imgs):
grid.paste(img, box=(i % cols * w, i // cols * h))
return grid
prompt = ["a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings"]
batch_size = 8
prompt = prompt * batch_size
device = "cpu"
model_id = "path-to-your-trained-model"
model = StableDiffusionPipeline.from_pretrained(model_id)
model = model.to(device)
# to channels last
model.unet = model.unet.to(memory_format=torch.channels_last)
model.vae = model.vae.to(memory_format=torch.channels_last)
model.text_encoder = model.text_encoder.to(memory_format=torch.channels_last)
model.safety_checker = model.safety_checker.to(memory_format=torch.channels_last)
# optimize with ipex
model.unet = ipex.optimize(model.unet.eval(), dtype=torch.bfloat16, inplace=True)
model.vae = ipex.optimize(model.vae.eval(), dtype=torch.bfloat16, inplace=True)
model.text_encoder = ipex.optimize(model.text_encoder.eval(), dtype=torch.bfloat16, inplace=True)
model.safety_checker = ipex.optimize(model.safety_checker.eval(), dtype=torch.bfloat16, inplace=True)
# compute
seed = 666
generator = torch.Generator(device).manual_seed(seed)
with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloat16):
images = model(prompt, guidance_scale=7.5, num_inference_steps=50, generator=generator).images
# save image
grid = image_grid(images, rows=2, cols=4)
grid.save(model_id + ".png")