Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 68,209 Bytes
e13b250 9a360e0 e13b250 70eb39e 19e650f 9dfd620 19e650f e13b250 2996553 e13b250 70eb39e e13b250 9a360e0 e13b250 70eb39e 19e650f e13b250 70eb39e e13b250 19e650f 70eb39e e13b250 70eb39e e13b250 19e650f b084d6f 9a360e0 e13b250 4bf3511 e13b250 4bf3511 9a360e0 e13b250 19e650f e13b250 19e650f e13b250 4bf3511 e13b250 19e650f e13b250 19e650f 4bf3511 e13b250 19e650f e13b250 19e650f e13b250 19e650f e13b250 4bf3511 70eb39e 19e650f e13b250 70eb39e 19e650f e13b250 70eb39e 19e650f e13b250 70eb39e 19e650f e13b250 70eb39e 19e650f 9a360e0 19e650f e13b250 70eb39e 9a360e0 70eb39e 19e650f 9a360e0 19e650f 9a360e0 70eb39e 9a360e0 19e650f 9a360e0 19e650f 9a360e0 eafe6b3 70eb39e 556b4d0 70eb39e b084d6f e13b250 6416cc4 70eb39e e13b250 19e650f 70eb39e 1e52f44 6416cc4 70eb39e 41119cb 70eb39e e13b250 19e650f e13b250 19e650f e13b250 19e650f b084d6f e13b250 19e650f 4bf3511 19e650f 4bf3511 19e650f e13b250 9a360e0 e13b250 9a360e0 e13b250 4bf3511 e13b250 19e650f e13b250 4bf3511 e13b250 4bf3511 e13b250 19e650f 4bf3511 e13b250 4bf3511 e13b250 19e650f 4bf3511 19e650f 4bf3511 e13b250 19e650f e13b250 19e650f e13b250 19e650f e13b250 19e650f e13b250 9a360e0 d3099af 9a360e0 b084d6f 9a360e0 e13b250 b084d6f e13b250 70eb39e e13b250 70eb39e 9a360e0 d3099af 9a360e0 e13b250 19e650f 4bf3511 b084d6f 4bf3511 e13b250 19e650f b084d6f 19e650f b084d6f 19e650f d3099af 19e650f b084d6f 19e650f 4bf3511 19e650f 5efeab2 b084d6f 19e650f b084d6f 19e650f b084d6f 19e650f 9a360e0 d3099af 19e650f d3099af b084d6f d3099af b084d6f 19e650f b084d6f 4bf3511 b084d6f e13b250 b084d6f 6416cc4 b084d6f e13b250 70eb39e 9a360e0 d3099af 9a360e0 e13b250 19e650f e13b250 b084d6f e13b250 4bf3511 b084d6f 4bf3511 b084d6f 4bf3511 19e650f e13b250 19e650f b084d6f 19e650f 9a360e0 19e650f b084d6f d3099af 19e650f b084d6f 19e650f b084d6f 4bf3511 b084d6f e13b250 6416cc4 19e650f e13b250 4bf3511 d3099af 9a360e0 d3099af 4bf3511 9a360e0 d3099af 4bf3511 9a360e0 4bf3511 9a360e0 d3099af 9a360e0 d3099af 9a360e0 4bf3511 9a360e0 4bf3511 9a360e0 d3099af 9a360e0 d3099af 9a360e0 e13b250 6416cc4 19e650f e13b250 9a360e0 4bf3511 d3099af 4bf3511 e13b250 19e650f e13b250 6416cc4 e13b250 19e650f 4bf3511 19e650f 4bf3511 19e650f e13b250 19e650f 6416cc4 e13b250 19e650f 6416cc4 e13b250 19e650f 6416cc4 19e650f 6416cc4 19e650f e13b250 19e650f e13b250 19e650f e13b250 9a360e0 19e650f e13b250 19e650f e13b250 19e650f 9a360e0 19e650f e13b250 19e650f e13b250 19e650f e13b250 19e650f e13b250 19e650f 556b4d0 19e650f 556b4d0 19e650f 6416cc4 19e650f e13b250 19e650f 9a360e0 19e650f d3099af 556b4d0 19e650f 556b4d0 19e650f 6416cc4 19e650f 6416cc4 19e650f 9a360e0 d3099af 9a360e0 19e650f 9a360e0 b084d6f 9a360e0 d3099af 9a360e0 19e650f 4bf3511 19e650f e13b250 19e650f e13b250 19e650f 1e52f44 19e650f 9a360e0 19e650f 4bf3511 19e650f 4bf3511 19e650f e13b250 19e650f e13b250 9a360e0 19e650f 9a360e0 19e650f 9a360e0 19e650f 9a360e0 d3099af 9a360e0 d3099af 9a360e0 19e650f e13b250 19e650f e13b250 19e650f e13b250 19e650f e13b250 19e650f e13b250 19e650f e13b250 9a360e0 e13b250 19e650f 4bf3511 19e650f 4bf3511 19e650f 4bf3511 19e650f e13b250 19e650f e13b250 2996553 e13b250 2996553 e13b250 b084d6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 |
import hashlib
import itertools
import json
import textwrap
import threading
from math import pi
from uuid import uuid4
import io
import os
import pathlib
from pathlib import Path
import sys
import numpy as np
from Bio import SeqIO
from Bio.Align import PairwiseAligner
# from email_validator import validate_email
import gradio as gr
import hydra
import pandas as pd
import plotly.express as px
import requests
from rdkit.Chem.rdMolDescriptors import CalcNumRotatableBonds, CalcNumHeavyAtoms, CalcNumAtoms, CalcTPSA
from requests.adapters import HTTPAdapter, Retry
from rdkit import Chem
from rdkit.Chem import RDConfig, Descriptors, Draw, Lipinski, Crippen, PandasTools, AllChem
from rdkit.Chem.Scaffolds import MurckoScaffold
import seaborn as sns
import swifter
from tqdm.auto import tqdm
from deepscreen.data.dti import validate_seq_str, FASTA_PAT, SMILES_PAT
from deepscreen.predict import predict
sys.path.append(os.path.join(RDConfig.RDContribDir, 'SA_Score'))
import sascorer
ROOT = Path.cwd()
DF_FOR_REPORT = pd.DataFrame()
pd.set_option('display.float_format', '{:.3f}'.format)
PandasTools.molRepresentation = 'svg'
PandasTools.drawOptions = Draw.rdMolDraw2D.MolDrawOptions()
PandasTools.drawOptions.clearBackground = False
PandasTools.drawOptions.bondLineWidth = 1.5
PandasTools.drawOptions.explicitMethyl = True
PandasTools.drawOptions.singleColourWedgeBonds = True
PandasTools.drawOptions.useCDKAtomPalette()
PandasTools.molSize = (128, 128)
SESSION = requests.Session()
ADAPTER = HTTPAdapter(max_retries=Retry(total=5, backoff_factor=0.1, status_forcelist=[500, 502, 503, 504]))
SESSION.mount('http://', ADAPTER)
SESSION.mount('https://', ADAPTER)
# SCHEDULER = BackgroundScheduler()
UNIPROT_ENDPOINT = 'https://rest.uniprot.org/uniprotkb/{query}'
CUSTOM_DATASET_MAX_LEN = 10000
CSS = """
.help-tip {
position: absolute;
display: inline-block;
top: 16px;
right: 0px;
text-align: center;
border-radius: 40%;
/* border: 2px solid darkred; background-color: #8B0000;*/
width: 24px;
height: 24px;
font-size: 16px;
line-height: 26px;
cursor: default;
transition: all 0.5s cubic-bezier(0.55, 0, 0.1, 1);
z-index: 100 !important;
}
.help-tip:hover {
cursor: pointer;
/*background-color: #ccc;*/
}
.help-tip:before {
content: '?';
font-weight: 700;
color: #8B0000;
z-index: 100 !important;
}
.help-tip p {
visibility: hidden;
opacity: 0;
text-align: left;
background-color: #EFDDE3;
padding: 20px;
width: 300px;
position: absolute;
border-radius: 4px;
right: -4px;
color: #494F5A;
font-size: 13px;
line-height: normal;
transform: scale(0.7);
transform-origin: 100% 0%;
transition: all 0.5s cubic-bezier(0.55, 0, 0.1, 1);
z-index: 100;
}
.help-tip:hover p {
cursor: default;
visibility: visible;
opacity: 1;
transform: scale(1.0);
}
.help-tip p:before {
position: absolute;
content: '';
width: 0;
height: 0;
border: 6px solid transparent;
border-bottom-color: #EFDDE3;
right: 10px;
top: -12px;
}
.help-tip p:after {
width: 100%;
height: 40px;
content: '';
position: absolute;
top: -5px;
left: 0;
}
.upload_button {
background-color: #008000;
}
.absolute {
position: absolute;
}
#example {
padding: 0;
background: none;
border: none;
text-decoration: underline;
box-shadow: none;
text-align: left !important;
display: inline-block !important;
}
footer {
visibility: hidden
}
"""
class HelpTip:
def __new__(cls, text):
return gr.HTML(
# elem_classes="absolute",
value=f'<div class="help-tip"><p>{text}</p>',
)
def sa_score(row):
return sascorer.calculateScore(row['Compound'])
def mw(row):
return Chem.Descriptors.MolWt(row['Compound'])
def mr(row):
return Crippen.MolMR(row['Compound'])
def hbd(row):
return Lipinski.NumHDonors(row['Compound'])
def hba(row):
return Lipinski.NumHAcceptors(row['Compound'])
def logp(row):
return Crippen.MolLogP(row['Compound'])
def atom(row):
return CalcNumAtoms(row['Compound'])
def heavy_atom(row):
return CalcNumHeavyAtoms(row['Compound'])
def rotatable_bond(row):
return CalcNumRotatableBonds((row['Compound']))
def tpsa(row):
return CalcTPSA((row['Compound']))
def lipinski(row):
"""
Lipinski's rules:
Hydrogen bond donors <= 5
Hydrogen bond acceptors <= 10
Molecular weight <= 500 daltons
logP <= 5
"""
if hbd(row) > 5:
return False
elif hba(row) > 10:
return False
elif mw(row) > 500:
return False
elif logp(row) > 5:
return False
else:
return True
def reos(row):
"""
Rapid Elimination Of Swill filter:
Molecular weight between 200 and 500
LogP between -5.0 and +5.0
H-bond donor count between 0 and 5
H-bond acceptor count between 0 and 10
Formal charge between -2 and +2
Rotatable bond count between 0 and 8
Heavy atom count between 15 and 50
"""
if not 200 < mw(row) < 500:
return False
elif not -5.0 < logp(row) < 5.0:
return False
elif not 0 < hbd(row) < 5:
return False
elif not 0 < hba(row) < 10:
return False
elif not 0 < rotatable_bond(row) < 8:
return False
elif not 15 < heavy_atom(row) < 50:
return False
else:
return True
def ghose(row):
"""
Ghose drug like filter:
Molecular weight between 160 and 480
LogP between -0.4 and +5.6
Atom count between 20 and 70
Molar refractivity between 40 and 130
"""
if not 160 < mw(row) < 480:
return False
elif not -0.4 < logp(row) < 5.6:
return False
elif not 20 < atom(row) < 70:
return False
elif not 40 < mr(row) < 130:
return False
else:
return True
def veber(row):
"""
The Veber filter is a rule of thumb filter for orally active drugs described in
Veber et al., J Med Chem. 2002; 45(12): 2615-23.:
Rotatable bonds <= 10
Topological polar surface area <= 140
"""
if not rotatable_bond(row) <= 10:
return False
elif not tpsa(row) <= 140:
return False
else:
return True
def rule_of_three(row):
"""
Rule of Three filter (Congreve et al., Drug Discov. Today. 8 (19): 876–7, (2003).):
Molecular weight <= 300
LogP <= 3
H-bond donor <= 3
H-bond acceptor count <= 3
Rotatable bond count <= 3
"""
if not mw(row) <= 300:
return False
elif not logp(row) <= 3:
return False
elif not hbd(row) <= 3:
return False
elif not hba(row) <= 3:
return False
elif not rotatable_bond(row) <= 3:
return False
else:
return True
# def smarts_filter():
# alerts = Chem.MolFromSmarts("enter one smart here")
# detected_alerts = []
# for smiles in data['X1']:
# mol = Chem.MolFromSmiles(smiles)
# detected_alerts.append(mol.HasSubstructMatch(alerts))
SCORE_MAP = {
'SAscore': sa_score,
'LogP': logp,
'Molecular weight': mw,
'Number of heavy atoms': heavy_atom,
'Molar refractivity': mr,
'H-bond donor count': hbd,
'H-Bond acceptor count': hba,
'Rotatable bond count': rotatable_bond,
'Topological polar surface area': tpsa,
}
FILTER_MAP = {
# TODO support number_of_violations
'REOS': reos,
"Lipinski's Rule of Five": lipinski,
'Ghose': ghose,
'Rule of Three': rule_of_three,
'Veber': veber,
# 'PAINS': pains,
}
TASK_MAP = {
'Compound-protein interaction': 'DTI',
'Compound-protein binding affinity': 'DTA',
}
PRESET_MAP = {
'DeepDTA': 'deep_dta',
'DeepConvDTI': 'deep_conv_dti',
'GraphDTA': 'graph_dta',
'MGraphDTA': 'm_graph_dta',
'HyperAttentionDTI': 'hyper_attention_dti',
'MolTrans': 'mol_trans',
'TransformerCPI': 'transfomer_cpi',
'TransformerCPI2': 'transformer_cpi_2',
'DrugBAN': 'drug_ban',
'DrugVQA-Seq': 'drug_vqa'
}
TARGET_FAMILY_MAP = {
'General': 'general',
'Kinase': 'kinase',
'Non-kinase enzyme': 'enzyme',
'Membrane receptor': 'membrane',
'Nuclear receptor': 'nuclear',
'Ion channel': 'ion',
'Other protein targets': 'others',
}
TARGET_LIBRARY_MAP = {
'ChEMBL33 (Human)': 'ChEMBL33_human_proteins.csv',
# 'STITCH': 'stitch.csv',
# 'Drug Repurposing Hub': 'drug_repurposing_hub.csv',
}
DRUG_LIBRARY_MAP = {
'DrugBank (Human)': 'drugbank.csv',
}
COLUMN_ALIASES = {
'X1': 'Compound SMILES',
'X2': 'Target FASTA',
'ID1': 'Compound ID',
'ID2': 'Target ID',
}
def validate_columns(df, mandatory_cols):
missing_cols = [col for col in mandatory_cols if col not in df.columns]
if missing_cols:
error_message = (f"The following mandatory columns are missing "
f"in the uploaded dataset: {str(['X1', 'X2']).strip('[]')}.")
raise ValueError(error_message)
else:
return
def process_target_fasta(sequence):
lines = sequence.strip().split("\n")
if lines[0].startswith(">"):
lines = lines[1:]
return ''.join(lines).split(">")[0]
# record = SeqIO.parse(io.StringIO(sequence), "fasta")[0]
# return str(record.seq)
def send_email(receiver, msg):
pass
def submit_predict(predict_filepath, task, preset, target_family, flag, progress=gr.Progress(track_tqdm=True)):
if flag:
try:
job_id = flag
global COLUMN_ALIASES
task = TASK_MAP[task]
preset = PRESET_MAP[preset]
target_family = TARGET_FAMILY_MAP[target_family]
# email_hash = hashlib.sha256(email.encode()).hexdigest()
COLUMN_ALIASES = COLUMN_ALIASES | {
'Y': 'Actual interaction probability' if task == 'binary' else 'Actual binding affinity',
'Y^': 'Predicted interaction probability' if task == 'binary' else 'Predicted binding affinity'
}
# target_family_list = [target_family]
# for family in target_family_list:
# try:
prediction_df = pd.DataFrame()
with hydra.initialize(version_base="1.3", config_path="configs", job_name="webserver_inference"):
cfg = hydra.compose(
config_name="webserver_inference",
overrides=[f"task={task}",
f"preset={preset}",
f"ckpt_path=resources/checkpoints/{preset}-{task}-{target_family}.ckpt",
f"data.data_file='{str(predict_filepath)}'"])
predictions, _ = predict(cfg)
predictions = [pd.DataFrame(prediction) for prediction in predictions]
prediction_df = pd.concat([prediction_df, pd.concat(predictions, ignore_index=True)])
predictions_file = f'temp/{job_id}_predictions.csv'
prediction_df.to_csv(predictions_file, index=False)
return [predictions_file,
False]
except Exception as e:
gr.Warning(f"Prediction job failed due to error: {str(e)}")
return [None,
False]
else:
return [None,
False]
#
# except Exception as e:
# raise gr.Error(str(e))
# email_lock = Path(f"outputs/{email_hash}.lock")
# with open(email_lock, "w") as file:
# record = {
# "email": email,
# "job_id": job_id
# }
# json.dump(record, file)
# def run_predict():
# TODO per-user submit usage
# # email_lock = Path(f"outputs/{email_hash}.lock")
# # with open(email_lock, "w") as file:
# # record = {
# # "email": email,
# # "job_id": job_id
# # }
# # json.dump(record, file)
#
# job_lock = DATA_PATH / f"outputs/{job_id}.lock"
# with open(job_lock, "w") as file:
# pass
#
# try:
# prediction_df = pd.DataFrame()
# for family in target_family_list:
# with hydra.initialize(version_base="1.3", config_path="configs", job_name="webserver_inference"):
# cfg = hydra.compose(
# config_name="webserver_inference",
# overrides=[f"task={task}",
# f"preset={preset}",
# f"ckpt_path=resources/checkpoints/{preset}-{task}-{family}.ckpt",
# f"data.data_file='{str(predict_dataset)}'"])
#
# predictions, _ = predict(cfg)
# predictions = [pd.DataFrame(prediction) for prediction in predictions]
# prediction_df = pd.concat([prediction_df, pd.concat(predictions, ignore_index=True)])
# prediction_df.to_csv(f'outputs/{job_id}.csv')
# # email_lock.unlink()
# job_lock.unlink()
#
# msg = (f'Your DeepSEQcreen prediction job (id: {job_id}) completed successfully. You may retrieve the '
# f'results and generate an analytical report at {URL} using the job id within 48 hours.')
# gr.Info(msg)
# except Exception as e:
# msg = (f'Your DeepSEQcreen prediction job (id: {job_id}) failed due to an error: "{str(e)}." You may '
# f'reach out to the author about the error through email ([email protected]).')
# raise gr.Error(str(e))
# finally:
# send_email(email, msg)
#
# # Run "predict" asynchronously
# threading.Thread(target=run_predict).start()
#
# msg = (f'Your DeepSEQcreen prediction job (id: {job_id}) started running. You may retrieve the results '
# f'and generate an analytical report at {URL} using the job id once the job is done. Only one job '
# f'per user is allowed at the same time.')
# send_email(email, msg)
# # Return the job id first
# return [
# gr.Blocks(visible=False),
# gr.Markdown(f"Your prediction job is running... "
# f"You may stay on this page or come back later to retrieve the results "
# f"Once you receive our email notification."),
# ]
def update_df(file, progress=gr.Progress(track_tqdm=True)):
global DF_FOR_REPORT
if file is not None:
df = pd.read_csv(file)
if df['X1'].nunique() > 1:
df['Scaffold SMILES'] = df['X1'].swifter.progress_bar(
desc=f"Calculating scaffold...").apply(MurckoScaffold.MurckoScaffoldSmilesFromSmiles)
# Add a new column with RDKit molecule objects
if 'Compound' not in df.columns or df['Compound'].dtype != 'object':
PandasTools.AddMoleculeColumnToFrame(df, smilesCol='X1', molCol='Compound',
includeFingerprints=True)
PandasTools.AddMoleculeColumnToFrame(df, smilesCol='Scaffold SMILES', molCol='Scaffold',
includeFingerprints=True)
DF_FOR_REPORT = df.copy()
# pie_chart = None
# value = None
# if 'Y^' in DF_FOR_REPORT.columns:
# value = 'Y^'
# elif 'Y' in DF_FOR_REPORT.columns:
# value = 'Y'
# if value:
# if DF_FOR_REPORT['X1'].nunique() > 1 >= DF_FOR_REPORT['X2'].nunique():
# pie_chart = create_pie_chart(DF_FOR_REPORT, category='Scaffold SMILES', value=value, top_k=100)
# elif DF_FOR_REPORT['X2'].nunique() > 1 >= DF_FOR_REPORT['X1'].nunique():
# pie_chart = create_pie_chart(DF_FOR_REPORT, category='Target family', value=value, top_k=100)
return create_html_report(DF_FOR_REPORT), df # pie_chart
else:
return gr.HTML(), gr.Dataframe()
def create_html_report(df, file=None, progress=gr.Progress(track_tqdm=True)):
df_html = df.copy()
cols_left = ['ID1', 'ID2', 'Y', 'Y^', 'Compound', 'Scaffold', 'Scaffold SMILES', ]
cols_right = ['X1', 'X2']
cols_left = [col for col in cols_left if col in df_html.columns]
cols_right = [col for col in cols_right if col in df_html.columns]
df_html = df_html[cols_left + (df_html.columns.drop(cols_left + cols_right).tolist()) + cols_right]
df_html['X2'] = df_html['X2'].swifter.apply(wrap_text)
df_html = df_html.sort_values(
[col for col in ['Y', 'Y^', 'ID1', 'ID2', 'X1', 'X2'] if col in df.columns], ascending=False
).rename(columns=COLUMN_ALIASES)
# PandasTools.RenderImagesInAllDataFrames(images=True)
PandasTools.ChangeMoleculeRendering(df_html, renderer='image')
# Return the DataFrame as HTML
PandasTools.RenderImagesInAllDataFrames(images=True)
if not file:
styled_df = df_html.iloc[:51].style
# styled_df = df.style.format("{:.2f}")
colors = sns.color_palette('husl', len(df_html.columns))
for i, col in enumerate(df_html.columns):
if pd.api.types.is_numeric_dtype(df_html[col]):
styled_df = styled_df.background_gradient(subset=col, cmap=sns.light_palette(colors[i], as_cmap=True))
html = styled_df.to_html()
return f'Report preview<div style="overflow:auto; height: 300px; font-family: Courier !important;">{html}</div>'
else:
import panel as pn
from bokeh.resources import INLINE
from bokeh.models import NumberFormatter, BooleanFormatter
bokeh_formatters = {
'float': {'type': 'progress', 'legend': True},
'bool': BooleanFormatter(),
}
# html = df.to_html(file)
# return html
pn.widgets.Tabulator(df_html, formatters=bokeh_formatters).save(file, resources=INLINE)
# def create_pie_chart(df, category, value, top_k):
# df.rename(COLUMN_ALIASES, inplace=True)
# # Select the top_k records based on the value_col
# top_k_df = df.nlargest(top_k, value)
#
# # Count the frequency of each unique value in the category_col column
# category_counts = top_k_df[category].value_counts()
#
# # Convert the counts to a DataFrame
# data = pd.DataFrame({category: category_counts.index, 'value': category_counts.values})
#
# # Calculate the angle for each category
# data['angle'] = data['value']/data['value'].sum() * 2*pi
#
# # Assign colors
# data['color'] = Spectral11[0:len(category_counts)]
#
# # Create the plot
# p = figure(height=350, title="Pie Chart", toolbar_location=None,
# tools="hover", tooltips="@{}: @value".format(category), x_range=(-0.5, 1.0))
#
# p.wedge(x=0, y=1, radius=0.4,
# start_angle=cumsum('angle', include_zero=True), end_angle=cumsum('angle'),
# line_color="white", fill_color='color', legend_field=category, source=data)
#
# p.axis.axis_label = None
# p.axis.visible = False
# p.grid.grid_line_color = None
#
# return p
def create_pie_chart(df, category, value, top_k):
df = df.copy()
df.rename(COLUMN_ALIASES, inplace=True)
value = COLUMN_ALIASES.get(value, value)
# Select the top_k records based on the value_col
top_k_df = df.nlargest(top_k, value)
# Count the frequency of each unique value in the category_col column
category_counts = top_k_df[category].value_counts()
# Convert the counts to a DataFrame
data = pd.DataFrame({category: category_counts.index, 'value': category_counts.values})
# Create the plot
fig = px.pie(data, values='value', names=category, title=f'Top-{top_k} {category} in {value}')
fig.update_traces(textposition='inside', textinfo='percent+label')
return fig
def submit_report(score_list, filter_list, progress=gr.Progress(track_tqdm=True)):
df = DF_FOR_REPORT.copy()
try:
for filter_name in filter_list:
df[filter_name] = df.swifter.progress_bar(desc=f"Calculating {filter_name}").apply(
FILTER_MAP[filter_name], axis=1)
for score_name in score_list:
df[score_name] = df.swifter.progress_bar(desc=f"Calculating {score_name}").apply(
SCORE_MAP[score_name], axis=1)
# pie_chart = None
# value = None
# if 'Y^' in df.columns:
# value = 'Y^'
# elif 'Y' in df.columns:
# value = 'Y'
#
# if value:
# if df['X1'].nunique() > 1 >= df['X2'].nunique():
# pie_chart = create_pie_chart(df, category='Scaffold SMILES', value=value, top_k=100)
# elif df['X2'].nunique() > 1 >= df['X1'].nunique():
# pie_chart = create_pie_chart(df, category='Target family', value=value, top_k=100)
return create_html_report(df), df # pie_chart
except Exception as e:
raise gr.Error(str(e))
# def check_job_status(job_id):
# job_lock = DATA_PATH / f"{job_id}.lock"
# job_file = DATA_PATH / f"{job_id}.csv"
# if job_lock.is_file():
# return {gr.Markdown(f"Your job ({job_id}) is still running... "
# f"You may stay on this page or come back later to retrieve the results "
# f"Once you receive our email notification."),
# None,
# None
# }
# elif job_file.is_file():
# return {gr.Markdown(f"Your job ({job_id}) is done! Redirecting you to generate reports..."),
# gr.Tabs(selected=3),
# gr.File(str(job_lock))}
def wrap_text(text, line_length=60):
wrapper = textwrap.TextWrapper(width=line_length)
if text.startswith('>'):
sections = text.split('>')
wrapped_sections = []
for section in sections:
if not section:
continue
lines = section.split('\n')
seq_header = lines[0]
wrapped_seq = wrapper.fill(''.join(lines[1:]))
wrapped_sections.append(f">{seq_header}\n{wrapped_seq}")
return '\n'.join(wrapped_sections)
else:
return wrapper.fill(text)
def unwrap_text(text):
return text.strip.replece('\n', '')
def smiles_from_sdf(sdf_path):
with Chem.SDMolSupplier(sdf_path) as suppl:
return Chem.MolToSmiles(suppl[0])
def drug_library_from_sdf(sdf_path):
return PandasTools.LoadSDF(
sdf_path,
smilesName='X1', molColName='Compound', includeFingerprints=True
)
def process_target_library_upload(library_upload):
if library_upload.endswith('.csv'):
identify_df = pd.read_csv(library_upload)
elif library_upload.endswith('.fasta'):
identify_df = target_library_from_fasta(library_upload)
else:
raise gr.Error('Currently only CSV and FASTA files are supported as target libraries.')
validate_columns(identify_df, ['X2'])
return library_upload
def process_drug_library_upload(library_upload):
if library_upload.endswith('.csv'):
screen_df = pd.read_csv(library_upload)
elif library_upload.endswith('.sdf'):
screen_df = drug_library_from_sdf(library_upload)
else:
raise gr.Error('Currently only CSV and SDF files are supported as compound libraries.')
validate_columns(screen_df, ['X1'])
return screen_df
def target_library_from_fasta(fasta_path):
records = list(SeqIO.parse(fasta_path, "fasta"))
id2 = [record.id for record in records]
seq = [str(record.seq) for record in records]
df = pd.DataFrame({'ID2': id2, 'X2': seq})
return df
theme = gr.themes.Base(spacing_size="sm", text_size='md').set(
background_fill_primary='#dfe6f0',
background_fill_secondary='#dfe6f0',
checkbox_label_background_fill='#dfe6f0',
checkbox_label_background_fill_hover='#dfe6f0',
checkbox_background_color='white',
checkbox_border_color='#4372c4',
border_color_primary='#4372c4',
border_color_accent='#4372c4',
button_primary_background_fill='#4372c4',
button_primary_text_color='white',
button_secondary_border_color='#4372c4',
body_text_color='#4372c4',
block_title_text_color='#4372c4',
block_label_text_color='#4372c4',
block_info_text_color='#505358',
block_border_color=None,
input_border_color='#4372c4',
panel_border_color='#4372c4',
input_background_fill='white',
code_background_fill='white',
)
with gr.Blocks(theme=theme, title='DeepSEQreen', css=CSS) as demo:
run_state = gr.State(value=False)
screen_flag = gr.State(value=False)
identify_flag = gr.State(value=False)
infer_flag = gr.State(value=False)
with gr.Tabs() as tabs:
with gr.TabItem(label='Drug hit screening', id=0):
gr.Markdown('''
# <center>DeepSEQreen Drug Hit Screening</center>
<center>
To predict interactions/binding affinities of a single target against a library of compounds.
</center>
''')
with gr.Blocks() as screen_block:
with gr.Column() as screen_page:
with gr.Row():
with gr.Column():
HelpTip(
"Enter (paste) a amino acid sequence below manually or upload a FASTA file."
"If multiple entities are in the FASTA, only the first will be used."
"Alternatively, enter a Uniprot ID or gene symbol with organism and click Query for the sequence."
)
with gr.Row():
target_input_type = gr.Dropdown(
label='Step 1. Select Target Input Type and Input',
choices=['Sequence', 'UniProt ID', 'Gene symbol'],
info='Enter (paste) a FASTA string below manually or upload a FASTA file.',
value='Sequence',
scale=4, interactive=True
)
target_id = gr.Textbox(show_label=False, visible=False,
interactive=True, scale=4,
info='Query a sequence on UniProt with a UniProt ID.')
target_gene = gr.Textbox(
show_label=False, visible=False,
interactive=True, scale=4,
info='Query a sequence on UniProt with a gene symbol.')
target_organism = gr.Textbox(
info='Organism scientific name (default: Homo sapiens).',
placeholder='Homo sapiens', show_label=False,
visible=False, interactive=True, scale=4, )
with gr.Row():
with gr.Column():
target_upload_btn = gr.UploadButton(label='Upload a FASTA file', type='binary',
visible=True, variant='primary',
size='lg')
target_query_btn = gr.Button(value='Query the sequence', variant='primary',
visible=False)
target_fasta = gr.Code(label='Input or Display FASTA', interactive=True, lines=5)
# with gr.Row():
# with gr.Column():
example_fasta = gr.Button(value='Example: Human MAPK14', elem_id='example')
# with gr.Column():
# gr.File(label='Example FASTA file',
# value='data/examples/MAPK14.fasta', interactive=False)
with gr.Row():
with gr.Column():
HelpTip(
"Click Auto-detect to identify the protein family using sequence alignment. "
"This optional step allows applying a family-specific model instead of a all-family model (general)."
"Manually select general if the alignment results are unsatisfactory."
)
drug_screen_target_family = gr.Dropdown(
choices=list(TARGET_FAMILY_MAP.keys()),
value='General',
label='Step 2. Select Input Protein Family (Optional)', interactive=True)
# with gr.Column(scale=1, min_width=24):
with gr.Row():
with gr.Column():
target_family_detect_btn = gr.Button(value='Auto-detect', variant='primary')
with gr.Row():
with gr.Column():
HelpTip(
"Select a preset compound library (e.g., DrugBank)."
"Alternatively, upload a CSV file with a column named X1 containing compound SMILES, or use an SDF file."
)
drug_library = gr.Dropdown(label='Step 3. Select or Upload a Compound Library',
choices=list(DRUG_LIBRARY_MAP.keys()))
with gr.Row():
gr.File(label='Example SDF compound library',
value='data/examples/compound_library.sdf', interactive=False)
gr.File(label='Example CSV compound library',
value='data/examples/compound_library.csv', interactive=False)
drug_library_upload_btn = gr.UploadButton(
label='Upload a custom library', variant='primary')
drug_library_upload = gr.File(label='Custom compound library file', visible=False)
with gr.Row():
with gr.Column():
HelpTip(
"Interaction prediction provides you binding probability score between the target of interest and each compound in the library,"
"while affinity prediction directly estimates their binding strength measured using IC50."
)
drug_screen_task = gr.Dropdown(list(TASK_MAP.keys()), label='Step 4. Select a Prediction Task',
value='Compound-protein interaction')
with gr.Row():
with gr.Column():
HelpTip("Select your preferred model, or click Recommend for the best-performing model based on the selected task, family, and whether the target was trained."
"Please refer to documentation for detailed benchamrk results."
)
drug_screen_preset = gr.Dropdown(list(PRESET_MAP.keys()), label='Step 5. Select a Preset Model')
screen_preset_recommend_btn = gr.Button(value='Recommend a model', variant='primary')
with gr.Row():
with gr.Column():
drug_screen_email = gr.Textbox(
label='Step 6. Email (Optional)',
info="If an email is provided, a notification email will be sent to you when your job is completed."
)
with gr.Row(visible=True):
with gr.Column():
# drug_screen_clr_btn = gr.ClearButton(size='lg')
drug_screen_btn = gr.Button(value='SCREEN', variant='primary', size='lg')
# TODO Modify the pd df directly with df['X2'] = target
screen_data_for_predict = gr.File(visible=False, file_count="single", type='filepath')
screen_waiting = gr.Markdown("""
<center>Your job is running... It might take a few minutes.
When it's done, you will be redirected to the report page.
Meanwhile, please leave the page on.</center>
""", visible=False)
with gr.TabItem(label='Target protein identification', id=1):
gr.Markdown('''
# <center>DeepSEQreen Target Protein Identification</center>
<center>
To predict interactions/binding affinities of a single compound against a library of protein targets.
</center>
ℹ️ A custom target library can be a FASTA file with a single or multiple amino acid sequences,
or a CSV file has a required FASTA string column and optionally an ID column:
<b>X2</b>: the FASTA sequence of a target\n
<b>ID2</b> (optional): the ID (PubChem or any arbitrary unique identifier) of a compound\n
Example CSV target library:
| X2 | ID2 |
|---------------|--------|
| MVQKSRNGGV... | O88943 |
| MTSPSSSPVF... | Q9Y5S1 |
''')
with gr.Blocks() as identify_block:
with gr.Column() as identify_page:
with gr.Row():
with gr.Column():
HelpTip(
"Enter (paste) a compound SMILES below manually or upload a SDF file."
"If multiple entities are in the SDF, only the first will be used."
"SMILES can be obtained by searching for the compound of interest in databases such as NCBI, PubChem and and ChEMBL."
)
compound_type = gr.Dropdown(
label='Step 1. Select Compound Input Type and Input',
choices=['SMILES', 'SDF'],
info='Enter (paste) an SMILES string or upload an SDF file.',
value='SMILES',
interactive=True)
compound_upload_btn = gr.UploadButton(label='Upload', variant='primary', type='binary')
compound_smiles = gr.Code(label='Input or Display Compound SMILES', interactive=True, lines=5)
example_drug = gr.Button(value='Example: Aspirin', elem_id='example')
with gr.Row():
with gr.Column():
HelpTip(
"By default, models trained on all protein families (general) will be applied."
"If the proteins in the target library of interest all belong to the same protein family, manually selecting the family is supported."
)
target_identify_target_family = gr.Dropdown(choices=list(TARGET_FAMILY_MAP.keys()),
value='General',
label='Step 2. Select Target Protein Family (Optional)')
with gr.Row():
with gr.Column():
HelpTip(
"Select a preset target library (e.g., ChEMBL33_human_proteins)."
"Alternatively, upload a CSV file with a column named X2 containing tareget protein sequences, or use an FASTA file."
)
target_library = gr.Dropdown(label='Step 3. Select or Upload a Target Library',
choices=list(TARGET_LIBRARY_MAP.keys()))
with gr.Row():
gr.File(label='Example FASTA target library',
value='data/examples/target_library.fasta', interactive=False)
gr.File(label='Example CSV target library',
value='data/examples/target_library.csv', interactive=False)
target_library_upload_btn = gr.UploadButton(
label='Upload a custom library', variant='primary')
target_library_upload = gr.File(label='Custom target library file', visible=False)
with gr.Row():
with gr.Column():
HelpTip(
"Interaction prediction provides you binding probability score between the target of interest and each compound in the library,"
"while affinity prediction directly estimates their binding strength measured using IC50."
)
target_identify_task = gr.Dropdown(list(TASK_MAP.keys()), label='Step 4. Select a Prediction Task',
value='Compound-protein interaction')
with gr.Row():
with gr.Column():
HelpTip("Select your preferred model, or click Recommend for the best-performing model based on the selected task, family, and whether the compound was trained."
"Please refer to documentation for detailed benchamrk results."
)
target_identify_preset = gr.Dropdown(list(PRESET_MAP.keys()), label='Step 5. Select a Preset Model')
identify_preset_recommend_btn = gr.Button(value='Recommend a model', variant='primary')
with gr.Row():
with gr.Column():
target_identify_email = gr.Textbox(
label='Step 6. Email (Optional)',
info="If an email is provided, a notification email will be sent to you when your job is completed."
)
with gr.Row(visible=True):
# target_identify_clr_btn = gr.ClearButton(size='lg')
target_identify_btn = gr.Button(value='IDENTIFY', variant='primary', size='lg')
identify_data_for_predict = gr.File(visible=False, file_count="single", type='filepath')
identify_waiting = gr.Markdown(f"Your job is running... It might take a few minutes."
f"When it's done, you will be redirected to the report page. "
f"Meanwhile, please leave the page on.",
visible=False)
with gr.TabItem(label='Interaction pair inference', id=2):
gr.Markdown('''
# <center>DeepSEQreen Interaction Pair Inference</center>
<center>To predict interactions/binding affinities between any compound-protein pairs.</center>
ℹ️ A custom interaction pair dataset can be generated from a FASTA file containing multiple sequences
and a SDF file containing multiple compounds (for predicting CPI/CPA of all possible combinations of
compound-protein pairs), or a CSV file with 2 required string columns and optionally 2 ID columns:
<b>X1</b>: the SMILES string of a compound\n
<b>X2</b>: the FASTA sequence of a target\n
<b>ID1</b> (optional): the ID (PubChem or any arbitrary unique identifier) of a compound\n
<b>ID2</b> (optional): the ID (UniProt or any arbitrary unique identifier) of a protein
Example CSV interaction pair dataset:
| X1 | X2 | ID1 | ID2 |
|---------------------------------------- |---------------|--------------|--------|
| CCOC(=O)Nc1ccc(NCc2ccc(F)cc2)cc1N | MVQKSRNGGV... | CHEMBL41355 | O88943 |
| CCCCCc1cc(O)c(C/C=C(\C)CCC=C(C)C)c(O)c1 | MTSPSSSPVF... | CHEMBL497318 | Q9Y5S1 |
''')
with gr.Blocks() as infer_block:
with gr.Column() as infer_page:
infer_type = gr.Dropdown(choices=['Upload a compound library and a target library',
'Upload a CSV interaction pair dataset'],
value='Upload a compound library and a target library')
with gr.Column() as pair_upload:
gr.File(label="Example custom dataset",
value="data/examples/interaction_pair_inference.csv",
interactive=False)
with gr.Column():
infer_data_for_predict = gr.File(
label='Upload a custom dataset', file_count="single", type='filepath', visible=True)
with gr.Column() as pair_generate:
with gr.Row():
gr.File(label='Example SDF compound library',
value='data/examples/compound_library.sdf', interactive=False)
gr.File(label='Example FASTA target library',
value='data/examples/target_library.fasta', interactive=False)
with gr.Row():
gr.File(label='Example CSV compound library',
value='data/examples/compound_library.csv', interactive=False)
gr.File(label='Example CSV target library',
value='data/examples/target_library.csv', interactive=False)
with gr.Row():
infer_drug = gr.File(label='SDF/CSV file containing multiple compounds',
file_count="single", type='filepath')
infer_target = gr.File(label='FASTA/CSV file containing multiple targets',
file_count="single", type='filepath')
with gr.Row(visible=True):
pair_infer_task = gr.Dropdown(list(TASK_MAP.keys()), label='Task')
pair_infer_preset = gr.Dropdown(list(PRESET_MAP.keys()), label='Preset')
pair_infer_target_family = gr.Dropdown(choices=['General'],
label='Target family',
value='General')
# with gr.Row():
# pair_infer_email = gr.Textbox(
# label='Email (optional)',
# info="Your email will be used to send you notifications when your job finishes."
# )
with gr.Row(visible=True):
# pair_infer_clr_btn = gr.ClearButton(size='lg')
pair_infer_btn = gr.Button(value='INFER', variant='primary', size='lg')
infer_waiting = gr.Markdown(f"Your job is running... It might take a few minutes."
f"When it's done, you will be redirected to the report page. "
f"Meanwhile, please leave the page on.",
visible=False)
with gr.TabItem(label='Chemical property report', id=3):
with gr.Blocks() as report:
gr.Markdown('''
# <center>DeepSEQreen Chemical Property Report</center>
<center>
To compute chemical properties for the predictions of drug hit screening,
target protein identification, and interaction pair inference.
You may also upload
your own dataset. The page shows only a preview report displaying at most 30 records
(with top predicted CPI/CPA if reporting results from a prediction job). For a full report, please
generate and download a raw data CSV or interactive table HTML file below.
</center>
''')
with gr.Row():
file_for_report = gr.File(interactive=True, type='filepath')
df_raw = gr.Dataframe(type="pandas", interactive=False, visible=False)
scores = gr.CheckboxGroup(list(SCORE_MAP.keys()), label='Scores')
filters = gr.CheckboxGroup(list(FILTER_MAP.keys()), label='Filters')
with gr.Row():
# clear_btn = gr.ClearButton(size='lg')
analyze_btn = gr.Button('REPORT', variant='primary', size='lg')
with gr.Row():
with gr.Column(scale=3):
html_report = gr.HTML() # label='Results', visible=True)
ranking_pie_chart = gr.Plot(visible=False)
with gr.Row():
with gr.Column():
csv_generate = gr.Button(value='Generate raw data (CSV)', interactive=True)
csv_download_file = gr.File(label='Download raw data (CSV)', visible=False)
with gr.Column():
html_generate = gr.Button(value='Generate report (HTML)', interactive=True)
html_download_file = gr.File(label='Download report (HTML)', visible=False)
def target_input_type_select(input_type):
match input_type:
case 'UniProt ID':
return [gr.Dropdown(info=''),
gr.UploadButton(visible=False),
gr.Textbox(visible=True, value=''),
gr.Textbox(visible=False, value=''),
gr.Textbox(visible=False, value=''),
gr.Button(visible=True),
gr.Code(value='')]
case 'Gene symbol':
return [gr.Dropdown(info=''),
gr.UploadButton(visible=False),
gr.Textbox(visible=False, value=''),
gr.Textbox(visible=True, value=''),
gr.Textbox(visible=True, value=''),
gr.Button(visible=True),
gr.Code(value='')]
case 'Sequence':
return [gr.Dropdown(info='Enter (paste) a FASTA string below manually or upload a FASTA file.'),
gr.UploadButton(visible=True),
gr.Textbox(visible=False, value=''),
gr.Textbox(visible=False, value=''),
gr.Textbox(visible=False, value=''),
gr.Button(visible=False),
gr.Code(value='')]
target_input_type.select(
fn=target_input_type_select,
inputs=target_input_type,
outputs=[
target_input_type, target_upload_btn,
target_id, target_gene, target_organism, target_query_btn,
target_fasta
],
show_progress=False
)
def uniprot_query(input_type, uid, gene, organism='Human'):
fasta_seq = ''
match input_type:
case 'UniProt ID':
query = f"{uid.strip()}.fasta"
case 'Gene symbol':
organism = organism if organism else 'Human'
query = f'search?query=organism_name:{organism.strip()}+AND+gene:{gene.strip()}&format=fasta'
try:
fasta = SESSION.get(UNIPROT_ENDPOINT.format(query=query))
fasta.raise_for_status()
fasta_seq = fasta.text
except Exception as e:
raise gr.Warning(f"Failed to query FASTA from UniProt database due to {str(e)}")
finally:
return fasta_seq
target_upload_btn.upload(fn=lambda x: x.decode(), inputs=target_upload_btn, outputs=target_fasta)
target_query_btn.click(uniprot_query,
inputs=[target_input_type, target_id, target_gene, target_organism],
outputs=target_fasta)
def target_family_detect(fasta, progress=gr.Progress(track_tqdm=True)):
aligner = PairwiseAligner(scoring='blastp', mode='local')
alignment_df = pd.read_csv('data/target_libraries/ChEMBL33_all_spe_single_prot_info.csv')
def align_score(query):
return aligner.align(process_target_fasta(fasta), query).score
alignment_df['score'] = alignment_df['X2'].swifter.progress_bar(
desc="Detecting protein family of the target...").apply(align_score)
row = alignment_df.loc[alignment_df['score'].idxmax()]
return gr.Dropdown(value=row['protein_family'].capitalize(),
info=f"Reason: Best BLASTP score ({row['score']}) "
f"with {row['ID2']} from family {row['protein_family']}")
target_family_detect_btn.click(fn=target_family_detect, inputs=target_fasta, outputs=drug_screen_target_family)
target_fasta.focus(fn=wrap_text, inputs=target_fasta, outputs=target_fasta, show_progress=False)
target_fasta.blur(fn=wrap_text, inputs=target_fasta, outputs=target_fasta, show_progress=False)
drug_library_upload_btn.upload(fn=lambda x: [
x.name, gr.Dropdown(value=Path(x.name).name, choices=list(DRUG_LIBRARY_MAP.keys()) + [Path(x.name).name])
], inputs=drug_library_upload_btn, outputs=[drug_library_upload, drug_library])
def example_fill(input_type):
return {target_id: 'Q16539',
target_gene: 'MAPK14',
target_organism: 'Human',
target_fasta: """
>sp|Q16539|MK14_HUMAN Mitogen-activated protein kinase 14 OS=Homo sapiens OX=9606 GN=MAPK14 PE=1 SV=3
MSQERPTFYRQELNKTIWEVPERYQNLSPVGSGAYGSVCAAFDTKTGLRVAVKKLSRPFQ
SIIHAKRTYRELRLLKHMKHENVIGLLDVFTPARSLEEFNDVYLVTHLMGADLNNIVKCQ
KLTDDHVQFLIYQILRGLKYIHSADIIHRDLKPSNLAVNEDCELKILDFGLARHTDDEMT
GYVATRWYRAPEIMLNWMHYNQTVDIWSVGCIMAELLTGRTLFPGTDHIDQLKLILRLVG
TPGAELLKKISSESARNYIQSLTQMPKMNFANVFIGANPLAVDLLEKMLVLDSDKRITAA
QALAHAYFAQYHDPDDEPVADPYDQSFESRDLLIDEWKSLTYDEVISFVPPPLDQEEMES
"""}
example_fasta.click(fn=example_fill, inputs=target_input_type,
outputs=[target_id, target_gene, target_organism, target_fasta], show_progress=False)
def screen_recommend_model(fasta, family, task):
task = TASK_MAP[task]
if task == 'DTI':
train = pd.read_csv('data/benchmarks/all_families_reduced_dti_train.csv')
score = 'AUROC'
elif task == 'DTA':
train = pd.read_csv('data/benchmarks/all_families_reduced_dta_train.csv')
score = 'CI'
if fasta not in train['X2']:
scenario = "Unseen target"
else:
scenario = "Seen target"
benchmark_df = pd.read_csv('data/benchmarks/compound_screen.csv')
if family == 'General':
filtered_df = benchmark_df[(benchmark_df[f'Task'] == task)
& (benchmark_df['Target.family'] == 'All families reduced')
& (benchmark_df['Scenario'] == 'Random split')
& (benchmark_df['all'] == True)]
else:
filtered_df = benchmark_df[(benchmark_df['Task'] == task)
& (benchmark_df['Target.family'] == family)
& (benchmark_df['Scenario'] == scenario)
& (benchmark_df['all'] == False)]
row = filtered_df.loc[filtered_df[score].idxmax()]
return gr.Dropdown(value=row['preset'],
info=f"Reason: {scenario} in the training dataset; we recommend the model "
f"with the best {score} ({float(row[score]):.3f}) "
f"in the {scenario.lower()} scenario on {family.lower()} family.")
screen_preset_recommend_btn.click(fn=screen_recommend_model,
inputs=[target_fasta, drug_screen_target_family, drug_screen_task],
outputs=drug_screen_preset)
def compound_input_type_select(input_type):
match input_type:
case 'SMILES':
return gr.Dropdown(info='Input an SMILES string or upload an SMI file')
case 'SDF':
return gr.Dropdown(info='Convert the first molecule in an SDF file to SMILES')
compound_type.select(fn=compound_input_type_select,
inputs=compound_type, outputs=compound_type, show_progress=False)
def compound_upload_process(input_type, input_upload):
match input_type:
case 'SMILES':
return input_upload.decode()
case 'SDF':
suppl = Chem.ForwardSDMolSupplier(io.BytesIO(input_upload))
return Chem.MolToSmiles(next(suppl))
compound_upload_btn.upload(fn=compound_upload_process,
inputs=[compound_type, compound_upload_btn],
outputs=compound_smiles)
example_drug.click(fn=lambda: 'CC(=O)Oc1ccccc1C(=O)O', outputs=compound_smiles, show_progress=False)
target_library_upload_btn.upload(fn=lambda x: [
x.name, gr.Dropdown(value=Path(x.name).name, choices=list(TARGET_LIBRARY_MAP.keys()) + [Path(x.name).name])
], inputs=target_library_upload_btn, outputs=[target_library_upload, target_library])
def identify_recommend_model(smiles, task):
task = TASK_MAP[task]
if task == 'DTI':
train = pd.read_csv('data/benchmarks/all_families_reduced_dti_train.csv')
score = 'AUROC'
elif task == 'DTA':
train = pd.read_csv('data/benchmarks/all_families_reduced_dta_train.csv')
score = 'CI'
if smiles not in train['X1']:
scenario = "Unseen drug"
else:
scenario = "Seen drug"
benchmark_df = pd.read_csv('data/benchmarks/target_identification.csv')
filtered_df = benchmark_df[(benchmark_df['Task'] == task)
& (benchmark_df['Scenario'] == scenario)]
row = filtered_df.loc[filtered_df[score].idxmax()]
return gr.Dropdown(value=row['preset'],
info=f"Reason: {scenario} in the training dataset; choosing the model "
f"with the best {score} ({float(row[score]):3f}) "
f"in the {scenario.lower()} scenario.")
identify_preset_recommend_btn.click(fn=identify_recommend_model,
inputs=[compound_smiles, target_identify_task],
outputs=target_identify_preset)
def infer_type_change(upload_type):
match upload_type:
case "Upload a compound library and a target library":
return {
pair_upload: gr.Column(visible=False),
pair_generate: gr.Column(visible=True),
infer_data_for_predict: None,
infer_drug: None,
infer_target: None
}
match upload_type:
case "Upload a CSV interaction pair dataset":
return {
pair_upload: gr.Column(visible=True),
pair_generate: gr.Column(visible=False),
infer_data_for_predict: None,
infer_drug: None,
infer_target: None
}
infer_type.select(fn=infer_type_change, inputs=infer_type,
outputs=[pair_upload, pair_generate, infer_data_for_predict, infer_drug, infer_target])
def drug_screen_validate(fasta, library, library_upload, state, progress=gr.Progress(track_tqdm=True)):
if not state:
try:
fasta = process_target_fasta(fasta)
err = validate_seq_str(fasta, FASTA_PAT)
if err:
raise ValueError(f'Found error(s) in your target fasta input: {err}')
if library in DRUG_LIBRARY_MAP.keys():
screen_df = pd.read_csv(Path('data/drug_libraries', DRUG_LIBRARY_MAP[library]))
else:
screen_df = process_drug_library_upload(library_upload)
print(screen_df.shape)
if len(screen_df) >= CUSTOM_DATASET_MAX_LEN:
raise gr.Error(f'The uploaded compound library has more records '
f'than the allowed maximum (CUSTOM_DATASET_MAX_LEN).')
screen_df['X2'] = fasta
job_id = uuid4()
temp_file = Path(f'temp/{job_id}_input.csv').resolve()
screen_df.to_csv(temp_file, index=False)
if temp_file.is_file():
return {screen_data_for_predict: str(temp_file),
screen_flag: job_id,
run_state: job_id}
else:
raise SystemError('Failed to create temporary files. Please try again later.')
except Exception as e:
gr.Warning(f'Failed to submit the job due to error: {str(e)}')
return {screen_flag: False,
run_state: False}
else:
gr.Warning('You have another prediction job '
'(drug hit screening, target protein identification, or interation pair inference) '
'running in the session right now. '
'Please submit another job when your current job has finished.')
return {screen_flag: False,
run_state: state}
def target_identify_validate(smiles, library, library_upload, state, progress=gr.Progress(track_tqdm=True)):
if not state:
try:
smiles = smiles.strip()
err = validate_seq_str(smiles, SMILES_PAT)
if err:
raise ValueError(f'Found error(s) in your target fasta input: {err}')
if library in TARGET_LIBRARY_MAP.keys():
identify_df = pd.read_csv(Path('data/target_libraries', TARGET_LIBRARY_MAP[library]))
else:
identify_df = process_target_library_upload(library_upload)
if len(identify_df) >= CUSTOM_DATASET_MAX_LEN:
raise gr.Error(f'The uploaded target library has more records '
f'than the allowed maximum (CUSTOM_DATASET_MAX_LEN).')
identify_df['X1'] = smiles
job_id = uuid4()
temp_file = Path(f'temp/{job_id}_input.csv').resolve()
identify_df.to_csv(temp_file, index=False)
if temp_file.is_file():
return {identify_data_for_predict: str(temp_file),
identify_flag: job_id,
run_state: job_id}
else:
raise SystemError('Failed to create temporary files. Please try again later.')
except Exception as e:
gr.Warning(f'Failed to submit the job due to error: {str(e)}')
return {identify_flag: False,
run_state: False}
else:
gr.Warning('You have another prediction job '
'(drug hit screening, target protein identification, or interation pair inference) '
'running in the session right now. '
'Please submit another job when your current job has finished.')
return {identify_flag: False,
run_state: state}
# return {identify_flag: False}
def pair_infer_validate(drug_target_pair_upload, drug_upload, target_upload, state,
progress=gr.Progress(track_tqdm=True)):
if not state:
try:
job_id = uuid4()
if drug_target_pair_upload:
infer_df = pd.read_csv(drug_target_pair_upload)
validate_columns(infer_df, ['X1', 'X2'])
infer_df['X1_ERR'] = infer_df['X1'].swifter.progress_bar(desc="Validating SMILES...").apply(
validate_seq_str, regex=SMILES_PAT)
if not infer_df['X1_ERR'].isna().all():
raise ValueError(
f"Encountered invalid SMILES:\n{infer_df[~infer_df['X1_ERR'].isna()][['X1', 'X1_ERR']]}")
infer_df['X2_ERR'] = infer_df['X2'].swifter.progress_bar(desc="Validating FASTA...").apply(
validate_seq_str, regex=FASTA_PAT)
if not infer_df['X2_ERR'].isna().all():
raise ValueError(
f"Encountered invalid FASTA:\n{infer_df[~infer_df['X2_ERR'].isna()][['X2', 'X2_ERR']]}")
return {infer_data_for_predict: str(drug_target_pair_upload),
infer_flag: job_id,
run_state: job_id}
elif drug_upload and target_upload:
drug_df = process_drug_library_upload(drug_upload)
target_df = process_target_library_upload(target_upload)
drug_df.drop_duplicates(subset=['X1'], inplace=True)
target_df.drop_duplicates(subset=['X2'], inplace=True)
infer_df = pd.DataFrame(list(itertools.product(drug_df['X1'], target_df['X2'])),
columns=['X1', 'X2'])
infer_df = infer_df.merge(drug_df, on='X1').merge(target_df, on='X2')
temp_file = Path(f'temp/{job_id}_input.csv').resolve()
infer_df.to_csv(temp_file, index=False)
if temp_file.is_file():
return {infer_data_for_predict: str(temp_file),
infer_flag: job_id,
run_state: job_id}
else:
raise gr.Error('Should upload a compound-protein pair dataset,or '
'upload both a compound library and a target library.')
if len(infer_df) >= CUSTOM_DATASET_MAX_LEN:
raise gr.Error(f'The uploaded/generated compound-protein pair dataset has more records '
f'than the allowed maximum (CUSTOM_DATASET_MAX_LEN).')
except Exception as e:
gr.Warning(f'Failed to submit the job due to error: {str(e)}')
return {infer_flag: False,
run_state: False}
else:
gr.Warning('You have another prediction job '
'(drug hit screening, target protein identification, or interation pair inference) '
'running in the session right now. '
'Please submit another job when your current job has finished.')
return {infer_flag: False,
run_state: state}
drug_screen_btn.click(
fn=drug_screen_validate,
inputs=[target_fasta, drug_library, drug_library_upload, run_state], # , drug_screen_email],
outputs=[screen_data_for_predict, screen_flag, run_state]
).then(
fn=lambda: [gr.Column(visible=False), gr.Markdown(visible=True)],
outputs=[screen_page, screen_waiting]
).then(
fn=submit_predict,
inputs=[screen_data_for_predict, drug_screen_task, drug_screen_preset,
drug_screen_target_family, screen_flag], # , drug_screen_email],
outputs=[file_for_report, run_state]
).then(
fn=lambda: [gr.Column(visible=True), gr.Markdown(visible=False), gr.Tabs(selected=3)],
outputs=[screen_page, screen_waiting, tabs]
)
target_identify_btn.click(
fn=target_identify_validate,
inputs=[compound_smiles, target_library, target_library_upload, run_state], # , drug_screen_email],
outputs=[identify_data_for_predict, identify_flag, run_state]
).then(
fn=lambda: [gr.Column(visible=False), gr.Markdown(visible=True), gr.Tabs(selected=3)],
outputs=[identify_page, identify_waiting, tabs]
).then(
fn=submit_predict,
inputs=[identify_data_for_predict, target_identify_task, target_identify_preset,
target_identify_target_family, identify_flag], # , target_identify_email],
outputs=[file_for_report, run_state]
).then(
fn=lambda: [gr.Column(visible=True), gr.Markdown(visible=False), gr.Tabs(selected=3)],
outputs=[identify_page, identify_waiting, tabs]
)
pair_infer_btn.click(
fn=pair_infer_validate,
inputs=[infer_data_for_predict, infer_drug, infer_target, run_state], # , drug_screen_email],
outputs=[infer_data_for_predict, infer_flag, run_state]
).then(
fn=lambda: [gr.Column(visible=False), gr.Markdown(visible=True)],
outputs=[infer_page, infer_waiting]
).then(
fn=submit_predict,
inputs=[infer_data_for_predict, pair_infer_task, pair_infer_preset,
pair_infer_target_family, infer_flag], # , pair_infer_email],
outputs=[file_for_report, run_state]
).then(
fn=lambda: [gr.Column(visible=True), gr.Markdown(visible=False)],
outputs=[infer_page, infer_waiting]
)
# TODO background job from these 3 pipelines to update file_for_report
file_for_report.change(fn=update_df, inputs=file_for_report, outputs=[
html_report,
df_raw,
# ranking_pie_chart
])
analyze_btn.click(fn=submit_report, inputs=[scores, filters], outputs=[
html_report,
df_raw,
# ranking_pie_chart
])
def create_csv_raw_file(df, file_report):
from datetime import datetime
now = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
filename = f"reports/{Path(file_report.name).stem}_DeepSEQreen_report_{now}.csv"
df.drop(['Compound', 'Scaffold']).to_csv(filename, index=False)
return gr.File(filename, visible=True)
def create_html_report_file(df, file_report):
from datetime import datetime
now = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
filename = f"reports/{Path(file_report.name).stem}_DeepSEQreen_report_{now}.html"
create_html_report(df, filename)
return gr.File(filename, visible=True)
csv_generate.click(fn=create_csv_raw_file, inputs=[df_raw, file_for_report], outputs=csv_download_file)
html_generate.click(fn=create_html_report_file, inputs=[df_raw, file_for_report], outputs=html_download_file)
# screen_waiting.change(fn=check_job_status, inputs=run_state, outputs=[pair_waiting, tabs, file_for_report],
# every=5)
# identify_waiting.change(fn=check_job_status, inputs=run_state, outputs=[identify_waiting, tabs, file_for_report],
# every=5)
# pair_waiting.change(fn=check_job_status, inputs=run_state, outputs=[pair_waiting, tabs, file_for_report],
# every=5)
# demo.load(None, None, None, js="() => {document.body.classList.remove('dark')}")
if __name__ == "__main__":
screen_block.queue(max_size=2)
identify_block.queue(max_size=2)
infer_block.queue(max_size=2)
report.queue(max_size=20)
# SCHEDULER.add_job(func=file_cleanup(), trigger="interval", seconds=60)
# SCHEDULER.start()
demo.launch(
show_api=False,
)
#%%
|