File size: 3,862 Bytes
57f1b64
 
9732969
 
57f1b64
 
 
 
9732969
57f1b64
9732969
 
 
57f1b64
9732969
 
 
 
 
 
 
 
 
57f1b64
9732969
 
 
 
 
57f1b64
9732969
57f1b64
9732969
57f1b64
9732969
 
 
 
 
 
 
 
57f1b64
9732969
 
57f1b64
 
9732969
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57f1b64
9732969
57f1b64
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import gradio as gr
from huggingface_hub import InferenceClient
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")

model_id = "GoToCompany/llama3-8b-cpt-sahabatai-v1-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)

# def respond(
#     message,
#     history: list[tuple[str, str]],
#     system_message,
#     max_tokens,
#     temperature,
#     top_p,
# ):
#     messages = [{"role": "system", "content": system_message}]

#     for val in history:
#         if val[0]:
#             messages.append({"role": "user", "content": val[0]})
#         if val[1]:
#             messages.append({"role": "assistant", "content": val[1]})

#     messages.append({"role": "user", "content": message})

#     response = ""

#     for message in client.chat_completion(
#         messages,
#         max_tokens=max_tokens,
#         stream=True,
#         temperature=temperature,
#         top_p=top_p,
#     ):
#         token = message.choices[0].delta.content

#         response += token
#         yield response


# """
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
# """
# demo = gr.ChatInterface(
#     respond,
#     additional_inputs=[
#         gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
#         gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
#         gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
#         gr.Slider(
#             minimum=0.1,
#             maximum=1.0,
#             value=0.95,
#             step=0.05,
#             label="Top-p (nucleus sampling)",
#         ),
#     ],
# )


# if __name__ == "__main__":
#     demo.launch()



# Function to generate text
def generate_text(prompt, max_length=100):
    inputs = tokenizer(prompt, return_tensors="pt")
    outputs = model.generate(
        **inputs,
        max_length=max_length,
        num_return_sequences=1,
        no_repeat_ngram_size=2,
        do_sample=True,
        top_p=0.95,
        temperature=0.7
    )
    return tokenizer.decode(outputs[0], skip_special_tokens=True)

# Gradio frontend
def gradio_interface(prompt, max_length):
    if not prompt.strip():
        return "Please enter a prompt."
    try:
        output = generate_text(prompt, max_length=max_length)
        return output
    except Exception as e:
        return f"An error occurred: {str(e)}"

# Define Gradio components
with gr.Blocks() as demo:
    gr.Markdown("# LLaMA3 8B CPT Sahabatai Instruct")
    gr.Markdown("Generate text using the **LLaMA3 8B CPT Sahabatai Instruct** model.")
    
    with gr.Row():
        with gr.Column():
            prompt_input = gr.Textbox(
                label="Enter your prompt",
                placeholder="Type something...",
                lines=3,
            )
            max_length_slider = gr.Slider(
                label="Max Length",
                minimum=10,
                maximum=200,
                value=100,
                step=10,
            )
            generate_button = gr.Button("Generate")
        
        with gr.Column():
            output_text = gr.Textbox(
                label="Generated Text",
                lines=10,
                interactive=False,
            )
    
    # Link the button to the function
    generate_button.click(
        fn=gradio_interface,
        inputs=[prompt_input, max_length_slider],
        outputs=output_text,
    )

# Launch the Gradio app

if __name__ == "__main__":
    demo.launch()