File size: 1,758 Bytes
65947b1
 
 
1d4cc3a
 
 
 
 
 
 
 
65947b1
 
 
 
 
1d4cc3a
 
65947b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d4cc3a
 
 
 
 
 
65947b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import gradio as gr
import torch

from src.augmentations import get_videomae_transform
from src.models import load_model
from src.utils import (
    create_plot,
    get_frames,
    get_videomae_outputs,
    prepare_frames_masks,
)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")


def get_visualisations(mask_ratio, video_path):
    transform = get_videomae_transform()

    frames, ids = get_frames(path=video_path, transform=transform)

    model, masks, patch_size = load_model(
        path="assets/checkpoint.pth",
        mask_ratio=mask_ratio,
        device=device,
    )

    with torch.no_grad():
        frames, masks = prepare_frames_masks(frames, masks, device)
        outputs = model(frames, masks)

        visualisations = get_videomae_outputs(
            frames=frames,
            masks=masks,
            outputs=outputs,
            ids=ids,
            patch_size=patch_size,
            device=device,
        )

    return create_plot(visualisations)


with gr.Blocks() as app:
    gr.Markdown(
        """
        # VideoMAE Reconstruction Demo
        To read more about the Self-Supervised Learning techniques for video please refer to the [Lightly AI blogpost on Self-Supervised Learning for Videos](www.lightly.ai/post/self-supervised-learning-for-videos).
        """  # noqa: E501
    )
    video = gr.Video(
        value="assets/example.mp4",
    )
    mask_ratio_slider = gr.Slider(
        minimum=0.25, maximum=0.95, step=0.05, value=0.75, label="masking ratio"
    )
    btn = gr.Button("Run")
    btn.click(
        get_visualisations,
        inputs=[mask_ratio_slider, video],
        outputs=gr.Plot(label="VideoMAE Outputs", format="png"),
    )

if __name__ == "__main__":
    app.launch()