Spaces:
Running
Running
File size: 5,203 Bytes
657585b 210ec4a d8164ce 210ec4a d8164ce 657585b d8164ce f0d2584 1c3f8cd 9b61493 1c3f8cd 9b61493 210ec4a 9b61493 1c3f8cd 9b61493 1c3f8cd 9b61493 f0d2584 9b61493 1c3f8cd 9b61493 1c3f8cd 9b61493 1c3f8cd 9b61493 1c3f8cd 9b61493 1c3f8cd 9b61493 f0d2584 9b61493 1c3f8cd 9b61493 f0d2584 657585b 8f9fe18 1c3f8cd 210ec4a f0d2584 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import os
from pathlib import Path
import torch
from transformers import AutoConfig, AutoTokenizer
from optimum.intel.openvino import OVModelForCausalLM
import openvino as ov
import openvino.properties as props
import openvino.properties.hint as hints
import openvino.properties.streams as streams
import gradio as gr
from llm_config import SUPPORTED_LLM_MODELS
# Initialize model language options
model_languages = list(SUPPORTED_LLM_MODELS)
# Helper function to retrieve model configuration and path
def get_model_path(model_language_value, model_id_value):
model_configuration = SUPPORTED_LLM_MODELS[model_language_value][model_id_value]
pt_model_name = model_id_value.split("-")[0]
int4_model_dir = Path(model_id_value) / "INT4_compressed_weights"
return model_configuration, int4_model_dir, pt_model_name
# Download the model if not already present
def download_model_if_needed(model_language_value, model_id_value):
model_configuration, int4_model_dir, pt_model_name = get_model_path(model_language_value, model_id_value)
int4_weights = int4_model_dir / "openvino_model.bin"
if not int4_weights.exists():
print(f"Downloading model {model_id_value}...")
# Download logic (e.g., requests.get(model_configuration["model_url"])) can go here
return int4_model_dir
# Load the model based on selected options
def load_model(model_language_value, model_id_value, device):
int4_model_dir = download_model_if_needed(model_language_value, model_id_value)
ov_config = {
hints.performance_mode(): hints.PerformanceMode.LATENCY,
streams.num(): "1",
props.cache_dir(): ""
}
core = ov.Core()
tok = AutoTokenizer.from_pretrained(int4_model_dir, trust_remote_code=True)
ov_model = OVModelForCausalLM.from_pretrained(
int4_model_dir,
device=device,
ov_config=ov_config,
config=AutoConfig.from_pretrained(int4_model_dir, trust_remote_code=True),
trust_remote_code=True
)
return tok, ov_model
# Define the function to generate responses
def generate_response(history, temperature, top_p, top_k, repetition_penalty, model_language_value, model_id_value, device):
tok, ov_model = load_model(model_language_value, model_id_value, device)
def convert_history_to_token(history):
input_tokens = tok(" ".join([msg[0] for msg in history]), return_tensors="pt").input_ids
return input_tokens
input_ids = convert_history_to_token(history)
generate_kwargs = dict(
input_ids=input_ids,
max_new_tokens=256,
temperature=temperature,
top_p=top_p,
top_k=top_k,
repetition_penalty=repetition_penalty
)
# Stream response to textbox
response = ""
for new_text in ov_model.generate(**generate_kwargs):
response += new_text
history[-1][1] = response
yield history
# Define Gradio interface within a Blocks context
with gr.Blocks() as iface:
# Dropdown for model language selection
model_language = gr.Dropdown(
choices=model_languages,
value=model_languages[0],
label="Model Language"
)
# Dropdown for model ID, dynamically populated
model_id = gr.Dropdown(
choices=[], # will be populated dynamically
label="Model",
value=None
)
# Update model_id choices when model_language changes
def update_model_id(model_language_value):
model_ids = list(SUPPORTED_LLM_MODELS[model_language_value])
return gr.Dropdown.update(value=model_ids[0], choices=model_ids)
model_language.change(update_model_id, inputs=model_language, outputs=model_id)
# Checkbox for INT4 model preparation
prepare_int4_model = gr.Checkbox(
value=True,
label="Prepare INT4 Model"
)
# Checkbox for enabling AWQ (shown conditionally)
enable_awq = gr.Checkbox(
value=False,
label="Enable AWQ",
visible=False # visibility can be controlled in the UI logic
)
# Dropdown for device selection
device = gr.Dropdown(
choices=["CPU", "GPU"],
value="CPU",
label="Device"
)
# Sliders for model generation parameters
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, label="Temperature")
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.9, label="Top P")
top_k = gr.Slider(minimum=0, maximum=50, value=50, label="Top K")
repetition_penalty = gr.Slider(minimum=1.0, maximum=2.0, value=1.1, label="Repetition Penalty")
# Conversation history state
history = gr.State([])
# Textbox for conversation history
conversation_output = gr.Textbox(label="Conversation History")
# Button to trigger response generation
generate_button = gr.Button("Generate Response")
# Define action when button is clicked
generate_button.click(
generate_response,
inputs=[history, temperature, top_p, top_k, repetition_penalty, model_language, model_id, device],
outputs=[conversation_output, history]
)
# Launch the Gradio app
if __name__ == "__main__":
iface.launch(debug=True, server_name="0.0.0.0", server_port=7860)
|