Update app.py
Browse files
app.py
CHANGED
@@ -9,8 +9,7 @@ from transformers import (
|
|
9 |
AutoModelForCausalLM,
|
10 |
AutoTokenizer,
|
11 |
GenerationConfig,
|
12 |
-
StoppingCriteriaList
|
13 |
-
TextIteratorStreamer # Importar TextIteratorStreamer
|
14 |
)
|
15 |
import uvicorn
|
16 |
import asyncio
|
@@ -24,7 +23,7 @@ class GenerateRequest(BaseModel):
|
|
24 |
input_text: str = ""
|
25 |
task_type: str
|
26 |
temperature: float = 1.0
|
27 |
-
max_new_tokens: int =
|
28 |
stream: bool = True
|
29 |
top_p: float = 1.0
|
30 |
top_k: int = 50
|
@@ -121,27 +120,44 @@ async def stream_text(model, tokenizer, input_text, generation_config, stop_sequ
|
|
121 |
|
122 |
stopping_criteria = StoppingCriteriaList([stop_criteria])
|
123 |
|
124 |
-
|
125 |
-
|
126 |
-
generation_kwargs = dict(
|
127 |
**encoded_input,
|
128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
stopping_criteria=stopping_criteria,
|
130 |
-
|
131 |
-
return_dict_in_generate=True
|
132 |
-
output_scores=True
|
133 |
)
|
134 |
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
|
|
139 |
|
140 |
-
|
141 |
-
|
142 |
-
if stop_sequences and any(stop in token for stop in stop_sequences): # Comprobar stop sequences en cada token
|
143 |
return
|
144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
|
146 |
@app.post("/generate-image")
|
147 |
async def generate_image(request: GenerateRequest):
|
|
|
9 |
AutoModelForCausalLM,
|
10 |
AutoTokenizer,
|
11 |
GenerationConfig,
|
12 |
+
StoppingCriteriaList
|
|
|
13 |
)
|
14 |
import uvicorn
|
15 |
import asyncio
|
|
|
23 |
input_text: str = ""
|
24 |
task_type: str
|
25 |
temperature: float = 1.0
|
26 |
+
max_new_tokens: int = 4
|
27 |
stream: bool = True
|
28 |
top_p: float = 1.0
|
29 |
top_k: int = 50
|
|
|
120 |
|
121 |
stopping_criteria = StoppingCriteriaList([stop_criteria])
|
122 |
|
123 |
+
output_text = ""
|
124 |
+
outputs = model.generate(
|
|
|
125 |
**encoded_input,
|
126 |
+
do_sample=generation_config.do_sample,
|
127 |
+
max_new_tokens=generation_config.max_new_tokens,
|
128 |
+
temperature=generation_config.temperature,
|
129 |
+
top_p=generation_config.top_p,
|
130 |
+
top_k=generation_config.top_k,
|
131 |
+
repetition_penalty=generation_config.repetition_penalty,
|
132 |
+
num_return_sequences=generation_config.num_return_sequences,
|
133 |
stopping_criteria=stopping_criteria,
|
134 |
+
output_scores=True,
|
135 |
+
return_dict_in_generate=True
|
|
|
136 |
)
|
137 |
|
138 |
+
for output in outputs.sequences:
|
139 |
+
for token_id in output:
|
140 |
+
token = tokenizer.decode(token_id, skip_special_tokens=True)
|
141 |
+
yield token
|
142 |
+
await asyncio.sleep(chunk_delay)
|
143 |
|
144 |
+
if stop_sequences and any(stop in output_text for stop in stop_sequences):
|
145 |
+
yield output_text
|
|
|
146 |
return
|
147 |
|
148 |
+
outputs = model.generate(
|
149 |
+
**encoded_input,
|
150 |
+
do_sample=generation_config.do_sample,
|
151 |
+
max_new_tokens=generation_config.max_new_tokens,
|
152 |
+
temperature=generation_config.temperature,
|
153 |
+
top_p=generation_config.top_p,
|
154 |
+
top_k=generation_config.top_k,
|
155 |
+
repetition_penalty=generation_config.repetition_penalty,
|
156 |
+
num_return_sequences=generation_config.num_return_sequences,
|
157 |
+
stopping_criteria=stopping_criteria,
|
158 |
+
output_scores=True,
|
159 |
+
return_dict_in_generate=True
|
160 |
+
)
|
161 |
|
162 |
@app.post("/generate-image")
|
163 |
async def generate_image(request: GenerateRequest):
|