Spaces:
Running
Running
File size: 1,713 Bytes
74a3a30 7f5deb9 74a3a30 3833e7c 74a3a30 128ad4b f93980b 603a3b6 f93980b 603a3b6 74a3a30 115aabe 4820d53 603a3b6 74a3a30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
import streamlit as st
import cv2
import pandas
from PIL import Image
import numpy as np
import tensorflow as tf
from tensorflow.keras.applications.resnet50 import preprocess_input
from tensorflow.keras.preprocessing.image import img_to_array
st.title('Palm Identification')
st.markdown("This is a Deep Learning application to identify if a satellite image clip contains Palm trees.\n")
st.markdown('The predicting result will be "Palm", or "Others".')
st.markdown('You can click "Browse files" multiple times until adding all images before generating prediction.\n')
#uploaded_file = st.file_uploader("Upload an image file", type="jpg", accept_multiple_files=True)
#imageContainer = st.empty()
#closeImage = st.button("clear all images")
with st.form("list", clear_on_submit=True):
uploaded_file = st.file_uploader("Upload image files", type="jpg", accept_multiple_files=True)
submitted = st.form_submit_button("submit")
st.image(uploaded_file, width=100)
img_height = 224
img_width = 224
class_names = ['Palm', 'Others']
model = tf.keras.models.load_model('model')
if uploaded_file is not None:
Generate_pred = st.button("Generate Prediction")
if Generate_pred:
for file in uploaded_file:
img = Image.open(file)
img_array = img_to_array(img)
img_array = tf.expand_dims(img_array, axis = 0) # Create a batch
processed_image = preprocess_input(img_array)
predictions = model.predict(processed_image)
score = predictions[0]
st.markdown("Predicted class of the image {} is : {}".format(file, class_names[np.argmax(score)]))
|