Spaces:
Running
Running
import streamlit as st | |
from random import randint | |
#from .session_state import get_session_state | |
import cv2 | |
import pandas | |
from PIL import Image | |
import numpy as np | |
import tensorflow as tf | |
from tensorflow.keras.applications.resnet50 import preprocess_input | |
from tensorflow.keras.preprocessing.image import img_to_array | |
st.title('Palm Identification') | |
st.markdown("This is a Deep Learning application to identify if a satellite image clip contains Palm trees.\n") | |
st.markdown('The predicting result will be "Palm", or "Others".') | |
st.markdown('You can click "Browse files" multiple times until adding all images before generating prediction.\n') | |
#uploaded_file = st.file_uploader("Upload an image file", type="jpg", accept_multiple_files=True) | |
#imageContainer = st.empty() | |
#closeImage = st.button("clear all images") | |
img_height = 224 | |
img_width = 224 | |
class_names = ['Palm', 'Others'] | |
model = tf.keras.models.load_model('model') | |
state = st.session_state.get_session_state() | |
if not state.widget_key: | |
state.widget_key = str(randint(1000, 100000000)) | |
uploaded_file = st.file_uploader( | |
"Choose a file", accept_multiple_files=True, key=state.widget_key) | |
if st.button('clear uploaded_file'): | |
state.widget_key = str(randint(1000, 100000000)) | |
state.sync() | |
#Generate_pred = st.button("Generate Prediction") | |
#with st.form("form", clear_on_submit=True): | |
# uploaded_file = st.file_uploader("Upload image files", type="jpg", accept_multiple_files=True) | |
# if uploaded_file is not None: | |
# st.image(uploaded_file, width=100) | |
# submitted = st.form_submit_button("Toggle here to predict or to delete the data") | |
# if submitted and uploaded_file is not None: | |
# for file in uploaded_file: | |
# img = Image.open(file) | |
# img_array = img_to_array(img) | |
# img_array = tf.expand_dims(img_array, axis = 0) # Create a batch | |
# processed_image = preprocess_input(img_array) | |
# predictions = model.predict(processed_image) | |
# score = predictions[0] | |
# st.markdown("Predicted class of the image {} is : {}".format(file, class_names[np.argmax(score)])) | |
# uploaded_file = None | |