lily-hust's picture
Update app.py
66f72c6
raw
history blame
2.26 kB
import streamlit as st
from random import randint
#from .session_state import get_session_state
import cv2
import pandas
from PIL import Image
import numpy as np
import tensorflow as tf
from tensorflow.keras.applications.resnet50 import preprocess_input
from tensorflow.keras.preprocessing.image import img_to_array
st.title('Palm Identification')
st.markdown("This is a Deep Learning application to identify if a satellite image clip contains Palm trees.\n")
st.markdown('The predicting result will be "Palm", or "Others".')
st.markdown('You can click "Browse files" multiple times until adding all images before generating prediction.\n')
#uploaded_file = st.file_uploader("Upload an image file", type="jpg", accept_multiple_files=True)
#imageContainer = st.empty()
#closeImage = st.button("clear all images")
img_height = 224
img_width = 224
class_names = ['Palm', 'Others']
model = tf.keras.models.load_model('model')
state = st.session_state.get_session_state()
if not state.widget_key:
state.widget_key = str(randint(1000, 100000000))
uploaded_file = st.file_uploader(
"Choose a file", accept_multiple_files=True, key=state.widget_key)
if st.button('clear uploaded_file'):
state.widget_key = str(randint(1000, 100000000))
state.sync()
#Generate_pred = st.button("Generate Prediction")
#with st.form("form", clear_on_submit=True):
# uploaded_file = st.file_uploader("Upload image files", type="jpg", accept_multiple_files=True)
# if uploaded_file is not None:
# st.image(uploaded_file, width=100)
# submitted = st.form_submit_button("Toggle here to predict or to delete the data")
# if submitted and uploaded_file is not None:
# for file in uploaded_file:
# img = Image.open(file)
# img_array = img_to_array(img)
# img_array = tf.expand_dims(img_array, axis = 0) # Create a batch
# processed_image = preprocess_input(img_array)
# predictions = model.predict(processed_image)
# score = predictions[0]
# st.markdown("Predicted class of the image {} is : {}".format(file, class_names[np.argmax(score)]))
# uploaded_file = None